做分水岭图像分割
C++: void watershed(InputArray image, InputOutputArray markers)
c语言形式:void cvWatershed( const CvArr* image, CvArr* markers );
输入或输出的32比特单通道标记图像。
markers即是输入矩阵也是输出矩阵,大小与image大小相同。使用该函数的时候,用户在markers矩阵中必须粗略指定两种以上区域,该区域为1个点以上的连通点集,并用不同的正整数(1,2,3…)标记
函数cvWatershed实现在[Meyer92]描述的变量分水岭,基于非参数标记的分割算法中的一种。在把图像传给函数之前,用户需要用正指标大致勾画出图像标记的感兴趣区域。比如,每一个区域都表示成一个或者多个像素值1,2,3的互联部分。这些部分将作为将来图像区域的种子。标记中所有的其他像素,他们和勾画出的区域关系不明并且应由算法定义,应当被置0。这个函数的输出则是标记区域所有像素被置为某个种子部分的值,或者在区域边界则置-1。
注:每两个相邻区域也不是必须有一个分水岭边界(-1像素)分开,例如在初始标记图像里有这样相切的部分。opencv例程文件夹里面有函数的视觉效果演示和用户例程
#include<cv.h> #include<highgui.h> #include<iostream> #pragma comment(lib, "cv.lib") #pragma comment(lib, "cxcore.lib") #pragma comment(lib, "highgui.lib") using namespace std; IplImage* marker_mask = 0; IplImage* markers = 0; IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0; CvPoint prev_pt = {-1,-1}; void on_mouse( int event, int x, int y, int flags, void* param )//opencv 会自动给函数传入合适的值 { if( !img ) return; if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) ) prev_pt = cvPoint(-1,-1); else if( event == CV_EVENT_LBUTTONDOWN ) prev_pt = cvPoint(x,y); else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) ) { CvPoint pt = cvPoint(x,y); if( prev_pt.x < 0 ) prev_pt = pt; cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );//CvScalar 成员:double val[4] RGBA值A=alpha cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 ); prev_pt = pt; cvShowImage( "image", img); } } int main( int argc, char** argv ) { char* filename = argc >= 2 ? argv[1] : (char*)"test.png"; CvMemStorage* storage = cvCreateMemStorage(0); CvRNG rng = cvRNG(-1); if( (img0 = cvLoadImage(filename,1)) == 0 ) return 0; printf( "Hot keys: \n" "\tESC - quit the program\n" "\tr - restore the original image\n" "\tw or SPACE - run watershed algorithm\n" "\t\t(before running it, roughly mark the areas on the image)\n" "\t (before that, roughly outline several markers on the image)\n" ); cvNamedWindow( "image", 1 ); cvNamedWindow( "watershed transform", 1 ); img = cvCloneImage( img0 ); img_gray = cvCloneImage( img0 ); wshed = cvCloneImage( img0 ); marker_mask = cvCreateImage( cvGetSize(img), 8, 1 ); markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 ); cvCvtColor( img, marker_mask, CV_BGR2GRAY ); cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );//这两句只用将RGB转成3通道的灰度图即R=G=B,用来显示用 cvZero( marker_mask ); cvZero( wshed ); cvShowImage( "image", img ); cvShowImage( "watershed transform", wshed ); cvSetMouseCallback( "image", on_mouse, 0 ); for(;;) { int c = cvWaitKey(0); if( (char)c == 27 ) break; if( (char)c == 'r' ) { cvZero( marker_mask ); cvCopy( img0, img );//cvCopy()也可以这样用,不影响原img0图像,也随时更新 cvShowImage( "image", img ); } if( (char)c == 'w' || (char)c == ' ' ) { CvSeq* contours = 0; CvMat* color_tab = 0; int i, j, comp_count = 0; //下面选将标记的图像取得其轮廓, 将每种轮廓用不同的整数表示 //不同的整数使用分水岭算法时,就成为不同的种子点 //算法本来就是以各个不同的种子点为中心扩张 cvClearMemStorage(storage); cvFindContours( marker_mask, storage, &contours, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); cvZero( markers ); for( ; contours != 0; contours = contours->h_next, comp_count++ ) { cvDrawContours(markers, contours, cvScalarAll(comp_count+1), cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) ); } //cvShowImage("image",markers); if( comp_count == 0 ) continue; color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );//创建随机颜色列表 for( i = 0; i < comp_count; i++ ) //不同的整数标记 { uchar* ptr = color_tab->data.ptr + i*3; ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50); ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50); ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50); } { double t = (double)cvGetTickCount(); cvWatershed( img0, markers ); cvSave("img0.xml",markers); t = (double)cvGetTickCount() - t; printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) ); } // paint the watershed image for( i = 0; i < markers->height; i++ ) for( j = 0; j < markers->width; j++ ) { int idx = CV_IMAGE_ELEM( markers, int, i, j );//markers的数据类型为IPL_DEPTH_32S uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );//BGR三个通道的数是一起的,故要j*3 if( idx == -1 ) //输出时若为-1,表示各个部分的边界 dst[0] = dst[1] = dst[2] = (uchar)255; else if( idx <= 0 || idx > comp_count ) //异常情况 dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here else //正常情况 { uchar* ptr = color_tab->data.ptr + (idx-1)*3; dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2]; } } cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );//wshed.x.y=0.5*wshed.x.y+0.5*img_gray+0加权融合图像 cvShowImage( "watershed transform", wshed ); cvReleaseMat( &color_tab ); } } return 1; }