首先创建一个java工程,导入必要的jar包,工程结构类似下图:
intro.txt测试数据如下:
1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
每一行三列分别是:用户ID,物品ID,偏好值。
MyFirstRecommender代码如下:
package com.besttone.mahout.demo.recommender; import java.io.File; import java.io.IOException; import java.util.List; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.recommender.Recommender; import org.apache.mahout.cf.taste.similarity.UserSimilarity; // 基于用户的推荐程序 public class MyFirstRecommender { /** * @param args * @throws IOException * @throws TasteException */ public static void main(String[] args) throws IOException, TasteException { // TODO Auto-generated method stub // 装载数据文件,实现存储,并为计算提供所需的用户ID,物品ID,偏好值 DataModel dataModel = new FileDataModel(new File( MyFirstRecommender.class.getResource("intro.txt").getPath())); // 相似度 度量方式,采用皮尔逊相关系数度量,也可以采用其他度量方式 UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel); // 用户邻居,与给定用户最相似的一组用户 UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, dataModel); // 输出与userid=1最相似的两个userid // long[] neighborhoods = neighborhood.getUserNeighborhood(1); // for (long l : neighborhoods) { // System.out.println(l); // } // 推荐引擎,合并这些组件,实现推荐 Recommender recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity); // 为userID为1的用户推荐2个item List<RecommendedItem> items = recommender.recommend(1, 2); // 输出推荐的物品 for (RecommendedItem recommendedItem : items) { System.out.println(recommendedItem); } } }