Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Assume that the total area is never beyond the maximum possible value of int.
Credits:
Special thanks to @mithmatt for adding this problem, creating the above image and all test cases
class Solution { public: int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) { int val = (C-A)*(D-B) + (G-E)*(H-F); if (E > C || G < A || F > D || H < B) { return val; } val -= (min(C,G) - max(A,E))*(min(D,H) - max(B,F)); return val; } };
class Solution { public: int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) { int res = (D - B) * (C - A) + (H - F) * (G - E); int A1 = max(A, E), B1 = max(B, F), C1 = min(C, G), D1 = min(D, H); if (D1 <= B1 || C1 <= A1) return res; return res - (D1 - B1) * (C1 - A1); } };