对android系统源码的理解第一篇文章 推荐IBM的教程:
http://www.ibm.com/developerworks/cn/opensource/os-cn-android-build/
以防某日该文章被删除,现记录一下,全部copy保存,感谢IBM的文章,
Android Build 系统是 Android 源码的一部分。关于如何获取 Android 源码,请参照 Android Source 官方网站
http://source.android.com/source/downloading.html。
Android Build 系统用来编译 Android 系统,Android SDK 以及相关文档。该系统主要由 Make 文件,Shell 脚本以及 Python 脚本组成,其中最主要的是 Make 文件。
众所周知,Android 是一个开源的操作系统。Android 的源码中包含了大量的开源项目以及许多的模块。不同产商的不同设备对于 Android 系统的定制都是不一样的。
如何将这些项目和模块的编译统一管理起来,如何能够在不同的操作系统上进行编译,如何在编译时能够支持面向不同的硬件设备,不同的编译类型,且还要提供面向各个产商的定制扩展,是非常有难度的。
但 Android Build 系统很好的解决了这些问题,这里面有很多值得我们开发人员学习的地方。
对于 Android 平台开发人员来说,本文可以帮助你熟悉你每天接触到的构建环境。
对于其他开发人员来说,本文可以作为一个 GNU Make 的使用案例,学习这些成功案例,可以提升我们的开发经验。
Build 系统中最主要的处理逻辑都在 Make 文件中,而其他的脚本文件只是起到一些辅助作用,由于篇幅所限,本文只探讨 Make 文件中的内容。
整个 Build 系统中的 Make 文件可以分为三类:
第一类是 Build 系统核心文件,此类文件定义了整个 Build 系统的框架,而其他所有 Make 文件都是在这个框架的基础上编写出来的。
图 1 是 Android 源码树的目录结构,Build 系统核心文件全部位于 /build/core(本文所提到的所有路径都是以 Android 源码树作为背景的,“/”指的是源码树的根目录,与文件系统无关)目录下。
第二类是针对某个产品(一个产品可能是某个型号的手机或者平板电脑)的 Make 文件,这些文件通常位于 device 目录下,该目录下又以公司名以及产品名分为两级目录,图 2 是 device 目录下子目录的结构。对于一个产品的定义通常需要一组文件,这些文件共同构成了对于这个产品的定义。例如,/device/sony/it26 目录下的文件共同构成了对于 Sony LT26 型号手机的定义。
第三类是针对某个模块(关于模块后文会详细讨论)的 Make 文件。整个系统中,包含了大量的模块,每个模块都有一个专门的 Make 文件,这类文件的名称统一为“Android.mk”,该文件中定义了如何编译当前模块。Build 系统会在整个源码树中扫描名称为“Android.mk”的文件并根据其中的内容执行模块的编译。
Android 系统的编译环境目前只支持 Ubuntu 以及 Mac OS 两种操作系统。关于编译环境的构建方法请参见以下路径:http://source.android.com/source/initializing.html
在完成编译环境的准备工作以及获取到完整的 Android 源码之后,想要编译出整个 Android 系统非常的容易:
打开控制台之后转到 Android 源码的根目录,然后执行如清单 1 所示的三条命令即可("$"
是命令提示符,不是命令的一部分。):
完整的编译时间依赖于编译主机的配置,在笔者的 Macbook Pro(OS X 10.8.2, i7 2G CPU,8G RAM, 120G SSD)上使用 8 个 Job 同时编译共需要一个半小时左右的时间。
$ source build/envsetup.sh $ lunch full-eng $ make -j8
这三行命令的说明如下:
第一行命令“source build/envsetup.sh”引入了 build/envsetup.sh
脚本。该脚本的作用是初始化编译环境,并引入一些辅助的 Shell 函数,这其中就包括第二步使用 lunch 函数。
除此之外,该文件中还定义了其他一些常用的函数,它们如表 1 所示:
名称 | 说明 |
---|---|
croot | 切换到源码树的根目录 |
m | 在源码树的根目录执行 make |
mm | Build 当前目录下的模块 |
mmm | Build 指定目录下的模块 |
cgrep | 在所有 C/C++ 文件上执行 grep |
jgrep | 在所有 Java 文件上执行 grep |
resgrep | 在所有 res/*.xml 文件上执行 grep |
godir | 转到包含某个文件的目录路径 |
printconfig | 显示当前 Build 的配置信息 |
add_lunch_combo | 在 lunch 函数的菜单中添加一个条目 |
第二行命令“lunch full-eng”是调用 lunch 函数,并指定参数为“full-eng”。lunch 函数的参数用来指定此次编译的目标设备以及编译类型。在这里,这两个值分别是“full”和“eng”。“full”是 Android 源码中已经定义好的一种产品,是为模拟器而设置的。而编译类型会影响最终系统中包含的模块,关于编译类型将在表 7 中详细讲解。
如果调用 lunch 函数的时候没有指定参数,那么该函数将输出列表以供选择,该列表类似图 3 中的内容(列表的内容会根据当前 Build 系统中包含的产品配置而不同,具体参见后文“添加新的产品”),此时可以通过输入编号或者名称进行选择。
第三行命令“make -j8”才真正开始执行编译。make 的参数“-j”指定了同时编译的 Job 数量,这是个整数,该值通常是编译主机 CPU 支持的并发线程总数的 1 倍或 2 倍(例如:在一个 4 核,每个核支持两个线程的 CPU 上,可以使用 make -j8 或 make -j16)。在调用 make 命令时,如果没有指定任何目标,则将使用默认的名称为“droid”目标,该目标会编译出完整的 Android 系统镜像。
所有的编译产物都将位于 /out 目录下,该目录下主要有以下几个子目录:
make dist
target”将文件拷贝到该目录,默认的编译目标不会产生该目录。Build 的产物中最重要的是三个镜像文件,它们都位于 /out/target/product/<product_name>/ 目录下。
这三个文件是:
回页首
整个 Build 系统的入口文件是源码树根目录下名称为“Makefile”的文件,当在源代码根目录上调用 make 命令时,make 命令首先将读取该文件。
Makefile 文件的内容只有一行:“include build/core/main.mk
”。该行代码的作用很明显:包含 build/core/main.mk 文件。在 main.mk 文件中又会包含其他的文件,其他文件中又会包含更多的文件,这样就引入了整个 Build 系统。
这些 Make 文件间的包含关系是相当复杂的,图 3 描述了这种关系,该图中黄色标记的文件(且除了 $
开头的文件)都位于 build/core/ 目录下。
表 2 总结了图 4 中提到的这些文件的作用:
文件名 | 说明 |
---|---|
main.mk | 最主要的 Make 文件,该文件中首先将对编译环境进行检查,同时引入其他的 Make 文件。另外,该文件中还定义了几个最主要的 Make 目标,例如 droid,sdk,等(参见后文“Make 目标说明”)。 |
help.mk | 包含了名称为 help 的 Make 目标的定义,该目标将列出主要的 Make 目标及其说明。 |
pathmap.mk | 将许多头文件的路径通过名值对的方式定义为映射表,并提供 include-path-for 函数来获取。例如,通过$(call include-path-for, frameworks-native) 便可以获取到 framework 本地代码需要的头文件路径。 |
envsetup.mk | 配置 Build 系统需要的环境变量,例如:TARGET_PRODUCT,TARGET_BUILD_VARIANT,HOST_OS,HOST_ARCH 等。 当前编译的主机平台信息(例如操作系统,CPU 类型等信息)就是在这个文件中确定的。 另外,该文件中还指定了各种编译结果的输出路径。 |
combo/select.mk | 根据当前编译器的平台选择平台相关的 Make 文件。 |
dumpvar.mk | 在 Build 开始之前,显示此次 Build 的配置信息。 |
config.mk | 整个 Build 系统的配置文件,最重要的 Make 文件之一。该文件中主要包含以下内容:
|
definitions.mk | 最重要的 Make 文件之一,在其中定义了大量的函数。这些函数都是 Build 系统的其他文件将用到的。例如:my-dir,all-subdir-makefiles,find-subdir-files,sign-package 等,关于这些函数的说明请参见每个函数的代码注释。 |
distdir.mk | 针对 dist 目标的定义。dist 目标用来拷贝文件到指定路径。 |
dex_preopt.mk | 针对启动 jar 包的预先优化。 |
pdk_config.mk | 顾名思义,针对 pdk(Platform Developement Kit)的配置文件。 |
${ONE_SHOT_MAKEFILE} |
ONE_SHOT_MAKEFILE 是一个变量,当使用“mm”编译某个目录下的模块时,此变量的值即为当前指定路径下的 Make 文件的路径。 |
${subdir_makefiles} |
各个模块的 Android.mk 文件的集合,这个集合是通过 Python 脚本扫描得到的。 |
post_clean.mk | 在前一次 Build 的基础上检查当前 Build 的配置,并执行必要清理工作。 |
legacy_prebuilts.mk | 该文件中只定义了 GRANDFATHERED_ALL_PREBUILT 变量。 |
Makefile | 被 main.mk 包含,该文件中的内容是辅助 main.mk 的一些额外内容。 |
Android 源码中包含了许多的模块,模块的类型有很多种,例如:Java 库,C/C++ 库,APK 应用,以及可执行文件等 。并且,Java 或者 C/C++ 库还可以分为静态的或者动态的,库或可执行文件既可能是针对设备(本文的“设备”指的是 Android 系统将被安装的设备,例如某个型号的手机或平板)的也可能是针对主机(本文的“主机”指的是开发 Android 系统的机器,例如装有 Ubuntu 操作系统的 PC 机或装有 MacOS 的 iMac 或 Macbook)的。不同类型的模块的编译步骤和方法是不一样,为了能够一致且方便的执行各种类型模块的编译,在 config.mk 中定义了许多的常量,这其中的每个常量描述了一种类型模块的编译方式,这些常量有:
通过名称大概就可以猜出每个变量所对应的模块类型。(在模块的 Android.mk 文件中,只要包含进这里对应的常量便可以执行相应类型模块的编译。对于 Android.mk 文件的编写请参见后文:“添加新的模块”。)
这些常量的值都是另外一个 Make 文件的路径,详细的编译方式都是在对应的 Make 文件中定义的。这些常量和 Make 文件的是一一对应的,对应规则也很简单:常量的名称是 Make 文件的文件名除去后缀全部改为大写然后加上“BUILD_”作为前缀。例如常量 BUILD_HOST_PREBUILT 的值对应的文件就是 host_prebuilt.mk。
这些 Make 文件的说明如表 3 所示:
文件名 | 说明 |
---|---|
host_static_library.mk | 定义了如何编译主机上的静态库。 |
host_shared_library.mk | 定义了如何编译主机上的共享库。 |
static_library.mk | 定义了如何编译设备上的静态库。 |
shared_library.mk | 定义了如何编译设备上的共享库。 |
executable.mk | 定义了如何编译设备上的可执行文件。 |
host_executable.mk | 定义了如何编译主机上的可执行文件。 |
package.mk | 定义了如何编译 APK 文件。 |
prebuilt.mk | 定义了如何处理一个已经编译好的文件 ( 例如 Jar 包 )。 |
multi_prebuilt.mk | 定义了如何处理一个或多个已编译文件,该文件的实现依赖 prebuilt.mk。 |
host_prebuilt.mk | 处理一个或多个主机上使用的已编译文件,该文件的实现依赖 multi_prebuilt.mk。 |
java_library.mk | 定义了如何编译设备上的共享 Java 库。 |
static_java_library.mk | 定义了如何编译设备上的静态 Java 库。 |
host_java_library.mk | 定义了如何编译主机上的共享 Java 库。 |
不同类型的模块的编译过程会有一些相同的步骤,例如:编译一个 Java 库和编译一个 APK 文件都需要定义如何编译 Java 文件。因此,表 3 中的这些 Make 文件的定义中会包含一些共同的代码逻辑。为了减少代码冗余,需要将共同的代码复用起来,复用的方式是将共同代码放到专门的文件中,然后在其他文件中包含这些文件的方式来实现的。这些包含关系如图 5 所示。由于篇幅关系,这里就不再对其他文件做详细描述(其实这些文件从文件名称中就可以大致猜出其作用)。
回页首
如果在源码树的根目录直接调用“make”命令而不指定任何目标,则会选择默认目标:“droid”(在 main.mk 中定义)。因此,这和执行“make droid”效果是一样的。
droid 目标将编译出整个系统的镜像。从源代码到编译出系统镜像,整个编译过程非常复杂。这个过程并不是在 droid 一个目标中定义的,而是 droid 目标会依赖许多其他的目标,这些目标的互相配合导致了整个系统的编译。
图 6 描述了 droid 目标所依赖的其他目标:
图 6 中这些目标的说明如表 4 所示:
名称 | 说明 |
---|---|
apps_only | 该目标将编译出当前配置下不包含 user,userdebug,eng 标签(关于标签,请参见后文“添加新的模块”)的应用程序。 |
droidcore | 该目标仅仅是所依赖的几个目标的组合,其本身不做更多的处理。 |
dist_files | 该目标用来拷贝文件到 /out/dist 目录。 |
files | 该目标仅仅是所依赖的几个目标的组合,其本身不做更多的处理。 |
prebuilt | 该目标依赖于 $(ALL_PREBUILT) ,$(ALL_PREBUILT) 的作用就是处理所有已编译好的文件。 |
$(modules_to_install) |
modules_to_install 变量包含了当前配置下所有会被安装的模块(一个模块是否会被安装依赖于该产品的配置文件,模块的标签等信息),因此该目标将导致所有会被安装的模块的编译。 |
$(modules_to_check) |
该目标用来确保我们定义的构建模块是没有冗余的。 |
$(INSTALLED_ANDROID_INFO_TXT_TARGET) |
该目标会生成一个关于当前 Build 配置的设备信息的文件,该文件的生成路径是:out/target/product/<product_name>/android-info.txt |
systemimage | 生成 system.img。 |
$(INSTALLED_BOOTIMAGE_TARGET) |
生成 boot.img。 |
$(INSTALLED_RECOVERYIMAGE_TARGET) |
生成 recovery.img。 |
$(INSTALLED_USERDATAIMAGE_TARGET) |
生成 userdata.img。 |
$(INSTALLED_CACHEIMAGE_TARGET) |
生成 cache.img。 |
$(INSTALLED_FILES_FILE) |
该目标会生成 out/target/product/<product_name>/ installed-files.txt 文件,该文件中内容是当前系统镜像中已经安装的文件列表。 |
Build 系统中包含的其他一些 Make 目标说明如表 5 所示:
Make 目标 | 说明 |
---|---|
make clean | 执行清理,等同于:rm -rf out/。 |
make sdk | 编译出 Android 的 SDK。 |
make clean-sdk | 清理 SDK 的编译产物。 |
make update-api | 更新 API。在 framework API 改动之后,需要首先执行该命令来更新 API,公开的 API 记录在 frameworks/base/api 目录下。 |
make dist | 执行 Build,并将 MAKECMDGOALS 变量定义的输出文件拷贝到 /out/dist 目录。 |
make all | 编译所有内容,不管当前产品的定义中是否会包含。 |
make help | 帮助信息,显示主要的 make 目标。 |
make snod | 从已经编译出的包快速重建系统镜像。 |
make libandroid_runtime | 编译所有 JNI framework 内容。 |
makeframework | 编译所有 Java framework 内容。 |
makeservices | 编译系统服务和相关内容。 |
make <local_target> | 编译一个指定的模块,local_target 为模块的名称。 |
make clean-<local_target> | 清理一个指定模块的编译结果。 |
makedump-products | 显示所有产品的编译配置信息,例如:产品名,产品支持的地区语言,产品中会包含的模块等信息。 |
makePRODUCT-xxx-yyy | 编译某个指定的产品。 |
makebootimage | 生成 boot.img |
makerecoveryimage | 生成 recovery.img |
makeuserdataimage | 生成 userdata.img |
makecacheimage | 生成 cache.img |
回页首
当我们要开发一款新的 Android 产品的时候,我们首先就需要在 Build 系统中添加对于该产品的定义。
在 Android Build 系统中对产品定义的文件通常位于 device 目录下(另外还有一个可以定义产品的目录是 vender 目录,这是个历史遗留目录,Google 已经建议不要在该目录中进行定义,而应当选择 device 目录)。device 目录下根据公司名以及产品名分为二级目录,这一点我们在概述中已经提到过。
通常,对于一个产品的定义通常至少会包括四个文件:AndroidProducts.mk,产品版本定义文件,BoardConfig.mk 以及 verndorsetup.sh。下面我们来详细说明这几个文件。
PRODUCT_MAKEFILES := \ $(LOCAL_DIR)/full_stingray.mk \ $(LOCAL_DIR)/stingray_emu.mk \ $(LOCAL_DIR)/generic_stingray.mk
常量 | 说明 |
---|---|
PRODUCT_NAME | 最终用户将看到的完整产品名,会出现在“关于手机”信息中。 |
PRODUCT_MODEL | 产品的型号,这也是最终用户将看到的。 |
PRODUCT_LOCALES | 该产品支持的地区,以空格分格,例如:en_GB de_DE es_ES fr_CA。 |
PRODUCT_PACKAGES | 该产品版本中包含的 APK 应用程序,以空格分格,例如:Calendar Contacts。 |
PRODUCT_DEVICE | 该产品的工业设计的名称。 |
PRODUCT_MANUFACTURER | 制造商的名称。 |
PRODUCT_BRAND | 该产品专门定义的商标(如果有的话)。 |
PRODUCT_PROPERTY_OVERRIDES | 对于商品属性的定义。 |
PRODUCT_COPY_FILES | 编译该产品时需要拷贝的文件,以“源路径 : 目标路径”的形式。 |
PRODUCT_OTA_PUBLIC_KEYS | 对于该产品的 OTA 公开 key 的列表。 |
PRODUCT_POLICY | 产品使用的策略。 |
PRODUCT_PACKAGE_OVERLAYS | 指出是否要使用默认的资源或添加产品特定定义来覆盖。 |
PRODUCT_CONTRIBUTORS_FILE | HTML 文件,其中包含项目的贡献者。 |
PRODUCT_TAGS | 该产品的标签,以空格分格。 |
通常情况下,我们并不需要定义所有这些变量。Build 系统的已经预先定义好了一些组合,它们都位于 /build/target/product 下,每个文件定义了一个组合,我们只要继承这些预置的定义,然后再覆盖自己想要的变量定义即可。例如:
# 继承 full_base.mk 文件中的定义 $(call inherit-product, $(SRC_TARGET_DIR)/product/full_base.mk) # 覆盖其中已经定义的一些变量 PRODUCT_NAME := full_lt26 PRODUCT_DEVICE := lt26 PRODUCT_BRAND := Android PRODUCT_MODEL := Full Android on LT26
在配置了以上的文件之后,便可以编译出我们新添加的设备的系统镜像了。
首先,调用“source build/envsetup.sh
”该命令的输出中会看到 Build 系统已经引入了刚刚添加的 vendorsetup.sh 文件。
然后再调用“lunch”函数,该函数输出的列表中将包含新添加的 vendorsetup.sh 中添加的条目。然后通过编号或名称选择即可。
最后,调用“make -j8”来执行编译即可。
关于“模块”的说明在上文中已经提到过,这里不再赘述。
在源码树中,一个模块的所有文件通常都位于同一个文件夹中。为了将当前模块添加到整个 Build 系统中,每个模块都需要一个专门的 Make 文件,该文件的名称为“Android.mk”。Build 系统会扫描名称为“Android.mk”的文件,并根据该文件中内容编译出相应的产物。
需要注意的是:在 Android Build 系统中,编译是以模块(而不是文件)作为单位的,每个模块都有一个唯一的名称,一个模块的依赖对象只能是另外一个模块,而不能是其他类型的对象。对于已经编译好的二进制库,如果要用来被当作是依赖对象,那么应当将这些已经编译好的库作为单独的模块。对于这些已经编译好的库使用 BUILD_PREBUILT 或 BUILD_MULTI_PREBUILT。例如:当编译某个 Java 库需要依赖一些 Jar 包时,并不能直接指定 Jar 包的路径作为依赖,而必须首先将这些 Jar 包定义为一个模块,然后在编译 Java 库的时候通过模块的名称来依赖这些 Jar 包。
下面,我们就来讲解 Android.mk 文件的编写:
Android.mk 文件通常以以下两行代码作为开头:
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS)
这两行代码的作用是:
为了方便模块的编译,Build 系统设置了很多的编译环境变量。要编译一个模块,只要在编译之前根据需要设置这些变量然后执行编译即可。它们包括:
名称 | 说明 |
---|---|
eng | 默认类型,该编译类型适用于开发阶段。 当选择这种类型时,编译结果将:
|
user | 该编译类型适合用于最终发布阶段。 当选择这种类型时,编译结果将:
|
userdebug | 该编译类型适合用于 debug 阶段。 该类型和 user 一样,除了:
|
表 3 中的文件已经定义好了各种类型模块的编译方式。所以要执行编译,只需要引入表 3 中对应的 Make 文件即可(通过常量的方式)。例如,要编译一个 APK 文件,只需要在 Android.mk 文件中,加入“include $(BUILD_PACKAGE)
除此以外,Build 系统中还定义了一些便捷的函数以便在 Android.mk 中使用,包括:
$(call my-dir)
:获取当前文件夹路径。$(call all-java-files-under, <src>)
:获取指定目录下的所有 Java 文件。$(call all-c-files-under, <src>)
:获取指定目录下的所有 C 语言文件。$(call all-Iaidl-files-under, <src>)
:获取指定目录下的所有 AIDL 文件。$(call all-makefiles-under, <folder>)
:获取指定目录下的所有 Make 文件。$(call intermediates-dir-for, <class>, <app_name>, <host or target>, <common?> )
:获取 Build 输出的目标文件夹路径。清单 2 和清单 3 分别是编译 APK 文件和编译 Java 静态库的 Make 文件示例:
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) # 获取所有子目录中的 Java 文件 LOCAL_SRC_FILES := $(call all-subdir-java-files) # 当前模块依赖的静态 Java 库,如果有多个以空格分隔 LOCAL_STATIC_JAVA_LIBRARIES := static-library # 当前模块的名称 LOCAL_PACKAGE_NAME := LocalPackage # 编译 APK 文件 include $(BUILD_PACKAGE)
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) # 获取所有子目录中的 Java 文件 LOCAL_SRC_FILES := $(call all-subdir-java-files) # 当前模块依赖的动态 Java 库名称 LOCAL_JAVA_LIBRARIES := android.test.runner # 当前模块的名称 LOCAL_MODULE := sample # 将当前模块编译成一个静态的 Java 库 include $(BUILD_STATIC_JAVA_LIBRARY)
修改系统默认语言:/build/target/product/languages_small.mk文件将某种语言放第一