可参考这个题
http://blog.csdn.net/gaotong2055/article/details/9300141
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
#include <iostream> #include <stdio.h> using namespace std; int n,q; long long tree[400000]; long long add[400000]; int a,b,c; void build(int l, int r, int k){ add[k] = 0; if(l==r){ scanf("%lld", &tree[k]); return; } int m = (l+r)/2; build( l, m, 2*k); build( m+1, r, 2*k + 1); tree[k] = tree[2*k] + tree[2*k+1]; } void down(int k,int m){ if(add[k]){ add[k*2+1] += add[k]; add[k*2] += add[k]; tree[k*2] += (m-m/2) * add[k]; tree[k*2+1] += (m/2) * add[k]; add[k] = 0; } } void update(int l,int r, int k){ if( a <= l && b >= r){ //找到合适的区间 add[k] += c; tree[k] += (long long)(r - l + 1) * c; return; } down(k, r-l+1); //更新子树 int m = (l+r)/2; if(a <= m) update(l, m, 2*k); if(b > m) update(m+1, r, 2*k+1); tree[k] = tree[2*k] + tree[2*k+1]; } long long query(int l, int r, int k){ if(a <= l && b >= r) { return tree[k]; } down(k, r-l+1); //查询的时候需要更新子树 long long ans = 0; int m = (l+r)/2; if(a <= m) ans += query(l , m, k*2); if(b > m) ans += query(m+1, r, k*2+1); return ans; } int main() { //freopen("in.txt", "r", stdin); char cmd[5]; while(scanf("%d %d", &n, &q) != EOF){ build(1, n ,1); while(q--){ scanf("%s", cmd); if(cmd[0] == 'Q'){ scanf("%d %d",&a,&b); printf("%lld\n", query(1,n,1)); }else{ scanf("%d %d %d",&a, &b, &c); update(1, n, 1); } } } return 0; }