POJ1226:Substrings(后缀数组)

Description

You are given a number of case-sensitive strings of alphabetic characters, find the largest string X, such that either X, or its inverse can be found as a substring of any of the given strings.

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains a single integer n (1 <= n <= 100), the number of given strings, followed by n lines, each representing one string of minimum length 1 and maximum length 100. There is no extra white space before and after a string.

Output

There should be one line per test case containing the length of the largest string found.

Sample Input

2
3
ABCD
BCDFF
BRCD
2
rose
orchid

Sample Output

2
2 

Source

Tehran 2002 Preliminary

题意:给定n个字符串,求出现或反转后出如今每一个字符串中的最长子串。 
思路:先将每一个字符串都反过来写一遍。中间用一个互不同样的 


且没有出如今字符串中的字符隔开,再将n个字符串所有连起来,中间也是用一 


个互不同样的且没有出如今字符串中的字符隔开,求后缀数组。然后二分答案。 


再将后缀分组。推断的时候,要看是否有一组后缀在每一个原来的字符串或反转后 


的字符串中出现。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std;

#define LS 2*i
#define RS 2*i+1
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1000005
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define EXP 1e-8
int wa[N],wb[N],wsf[N],wv[N],sa[N];
int rank[N],height[N],s[N],a[N];
//sa:字典序中排第i位的起始位置在str中第sa[i]
//rank:就是str第i个位置的后缀是在字典序排第几
//height:字典序排i和i-1的后缀的最长公共前缀
int cmp(int *r,int a,int b,int k)
{
    return r[a]==r[b]&&r[a+k]==r[b+k];
}
void getsa(int *r,int *sa,int n,int m)//n要包括末尾加入的0
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0; i<m; i++)  wsf[i]=0;
    for(i=0; i<n; i++)  wsf[x[i]=r[i]]++;
    for(i=1; i<m; i++)  wsf[i]+=wsf[i-1];
    for(i=n-1; i>=0; i--)  sa[--wsf[x[i]]]=i;
    p=1;
    j=1;
    for(; p<n; j*=2,m=p)
    {
        for(p=0,i=n-j; i<n; i++)  y[p++]=i;
        for(i=0; i<n; i++)  if(sa[i]>=j)  y[p++]=sa[i]-j;
        for(i=0; i<n; i++)  wv[i]=x[y[i]];
        for(i=0; i<m; i++)  wsf[i]=0;
        for(i=0; i<n; i++)  wsf[wv[i]]++;
        for(i=1; i<m; i++)  wsf[i]+=wsf[i-1];
        for(i=n-1; i>=0; i--)  sa[--wsf[wv[i]]]=y[i];
        t=x;
        x=y;
        y=t;
        x[sa[0]]=0;
        for(p=1,i=1; i<n; i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?

p-1:p++; } } void getheight(int *r,int n)//n不保存最后的0 { int i,j,k=0; for(i=1; i<=n; i++) rank[sa[i]]=i; for(i=0; i<n; i++) { if(k) k--; else k=0; j=sa[rank[i]-1]; while(r[i+k]==r[j+k]) k++; height[rank[i]]=k; } } char str[N]; int len[105],size,ans[N],id[N]; bool vis[105]; bool check(int mid,int n,int k) { int i,j; int size = 0,cnt = 0; MEM(vis,false); for(i = 1; i<=n; i++) { if(height[i]>=mid) { for(j = 0; j<k; j++) { if(id[sa[i]]==j) cnt+=(vis[j]?0:1),vis[j]=true; if(id[sa[i-1]]==j) cnt+=(vis[j]?

0:1),vis[j]=true; } } else { if(cnt>=k) return true; cnt = 0; MEM(vis,false); } } if(cnt>=k) return true; return false; } int main() { int n,k,i,j,flag = 0,t; scanf("%d",&t); while(t--) { scanf("%d",&k); n = 0; size = 0; int p = 1; for(i = 0; i<k; i++) { scanf("%s",str); int ll = strlen(str); for(j = 0; j<ll; j++) { id[n] = i; s[n++] = str[j]; } s[n++] = '#'+(p++); for(j = ll-1; j>=0; j--) { id[n] = i; s[n++] = str[j]; } s[n++] = '#'+(p++); } s[n-1] = 0; getsa(s,sa,n,255); getheight(s,n-1); int l=1,r=n,mid,ans = 0; while(l<=r) { mid = (l+r)/2; if(check(mid,n,k)) { ans = mid; l = mid+1; } else r = mid-1; } printf("%d\n",ans); } return 0; }



你可能感兴趣的:(POJ1226:Substrings(后缀数组))