- 【JS】执行时长(100分) |思路参考+代码解析(C++)
l939035548
JS算法数据结构c++
题目为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1秒内新增的任务个数且每秒都有新增任务。假设GPU最多一次执行n个任务,一次执行耗时1秒,在保证GPU不空闲情况下,最少需要多长时间执行完成。题目输入第一个参数为GPU一次最多执行的任务个数,取值范围[1,10000]第二个参数为任务数组长度,取值范围[1,10000]第三个参数为任务数组,数字范围
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- 2021-06-07 Do What You Are Meant To Do
春生阁
Don’tgiveupontryingtofindbalanceinyourlife.Sticktoyourpriorities.Rememberwhat’smostimportanttoyouanddoeverythingyoucantoputyourselfinapositionwhereyoucanfocusonthosepriorities,ratherthanbeingpulledbyt
- 【安装环境】配置MMTracking环境
xuanyu22
安装环境机器学习神经网络深度学习python
版本v0.14.0安装torchnumpy的版本不能太高,否则后面安装时会发生冲突。先安装numpy,因为pytorch的安装会自动配置高版本numpy。condainstallnumpy=1.21.5mmtracking支持的torch版本有限,需要找到合适的condainstallpytorch==1.11.0torchvision==0.12.0cudatoolkit=10.2-cpytor
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- 深度学习-13-小语言模型之SmolLM的使用
皮皮冰燃
深度学习深度学习
文章附录1SmolLM概述1.1SmolLM简介1.2下载模型2运行2.1在CPU/GPU/多GPU上运行模型2.2使用torch.bfloat162.3通过位和字节的量化版本3应用示例4问题及解决4.1attention_mask和pad_token_id报错4.2max_new_tokens=205参考附录1SmolLM概述1.1SmolLM简介SmolLM是一系列尖端小型语言模型,提供三种规
- 【大模型】triton inference server
idiotyi
大模型自然语言处理语言模型人工智能
前言:tritoninferenceserver常用于大模型部署,可以采用http或GRPC调用,支持大部分的backend,单GPU、多GPU都可以支持,CPU也支持。本文主要是使用tritoninferenceserver部署大模型的简单流程示例。目录1.整体流程2.搭建本地仓库3.服务端代码4.启动服务5.客户端调用1.整体流程搭建模型仓库模型配置服务端调用代码docker启动服务客户端调用
- 安装torch报错 raise ReadTimeoutError(self._pool, None, “Read timed out.“) pip._vendor.urllib3.exceptions
待磨的钝刨
pippytorch人工智能
文章目录1.配置cuda的torch环境时报错1.配置命令2.报错bug2.解决方法1.增加下载超时时间:2.尝试使用镜像源:3.检查网络连接:4.分次安装:5.重试安装:6.手动下载.whl文件安装1.配置cuda的torch环境时报错1.配置命令pipinstalltorch==2.0.1torchvision==0.15.2torchaudio==2.0.2--index-urlhttps:
- SAM2跑通(Ubuntu20.04)内含安装多个cuda
好好607
pytorchlinux
参考链接:github链接安装cuda,之前借鉴的方法安装多个cuda补充cuda安装:Asymlinkalreadyexistsat/usr/local/cuda.Updatetothisinstallation?选择no,否则会创建一个软连接覆盖之前那个/usr/local/cudasudogedit~/.bashrc如果按第二个链接安装的cuda,手动改一下版本即可SAM环境安装步骤除了本地
- Upstage 将发布新一代 LLM “Solar Pro “预览版
吴脑的键客
人工智能人工智能
SolarPro是最智能的LLM,经过优化可在单GPU上运行,性能超过微软、Meta和谷歌等科技巨头的模型。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。该预览版作为开源模型免费提供API访问,
- 使用vllIm部署大语言模型
添砖JAVA的小墨
机器学习
使用vllm部署大语言模型一般需要以下步骤:一、准备工作1.系统要求-操作系统:常见的Linux发行版(如Ubuntu、CentOS)或Windows(通过WSL)。-GPU支持:NVIDIAGPU并安装了适当的驱动程序。-足够的内存和存储空间。2.安装依赖-Python3.8及以上版本。-CUDA工具包(根据GPU型号选择合适的版本)。二、安装vllm1.创建虚拟环境(推荐)-使用Conda:c
- vllm在线推理踩坑记
懂点投资的码农
大语言模型ai语言模型python
最近在《AI大模型全栈工程师》课程里看老师推荐使用vllm部署大模型,优点就不详细介绍了,这里摘抄一段来自于Qwen2上手指南对于它的简单介绍:它易于使用,且具有最先进的服务吞吐量、高效的注意力键值内存管理(通过PagedAttention实现)、连续批处理输入请求、优化的CUDA内核等功能。至于原理就先不看了,直接上手部署,以后再来补理论知识。一、vLLM在线推理在Qwen2的上市指南里介绍了v
- 大模型框架:vLLM
m0_37559973
大模型大模型通义千问Qwen
目录一、vLLM介绍二、安装vLLM2.1使用GPU进行安装2.2使用CPU进行安装2.3相关配置三、使用vLLM3.1离线推理3.2适配OpenAI-API的API服务一、vLLM介绍vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架。它利用了全新的注意力算法「PagedAttention」,提供易用、快速、便宜的LLM服务。二、安装vLLM2.1使用GPU进行安装vLLM是一个Py
- 多版本cuda安装及灵活切换详细教程
Fzc_PCL
CUDALinux记录cudalinux
一、首先介绍下我所使用的环境ubuntu18.04+1080ti二、下载安装包1.cudatoolkit下载①环境选择,想要多版本共存的,尽量选择runfile文件进行安装②有些cudatoolkit下载页面,和我上边的一样,没有对应的安装包下载按钮,BaseInstaller中只给了两行命令,如果运行第一行命令的话,下载会比较慢,我是直接复制wget后边的链接在新网页窗口中打开,会自动弹出下载窗
- Cuda 程序编译报错: fatal error: cusparse.h: No such file or directory
原野寻踪
实践经验cuda
编译cuda程序时发现下列报错:/mnt/xxx/miniconda3/envs/xxx/lib/python3.8/site-packages/torch/include/ATen/cuda/CUDAContext.h:6:10:fatalerror:cusparse.h:Nosuchfileordirectory#include^~~~~~~~~~~~检查发现是选择了错误的Cuda版本。ls/
- 天下苦英伟达久矣!PyTorch官方免CUDA加速推理,Triton时代要来?
诗者才子酒中仙
物联网/互联网/人工智能/其他pytorch人工智能python
在做大语言模型(LLM)的训练、微调和推理时,使用英伟达的GPU和CUDA是常见的做法。在更大的机器学习编程与计算范畴,同样严重依赖CUDA,使用它加速的机器学习模型可以实现更大的性能提升。虽然CUDA在加速计算领域占据主导地位,并成为英伟达重要的护城河之一。但其他一些工作的出现正在向CUDA发起挑战,比如OpenAI推出的Triton,它在可用性、内存开销、AI编译器堆栈构建等方面具有一定的优势
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 1. 下载安装RKNN的docker镜像
jcfszxc
RKNN系列c++Rockchip
安装好docker:1.Docker的安装进入网盘,下载镜像文件:网盘链接:https://console.zbox.filez.com/l/I00fc3密码:rknn下载最新的版本,当前最新版本2.1.0,([[2024-09-01]]):下载路径:GPU-Group01的分享/RKNPU2SDK/2.1.0/release/rknn-toolkit2-2.1.0-cp38-docker.tar
- 【ShuQiHere】小白也能懂的 TensorFlow 和 PyTorch GPU 配置教程
ShuQiHere
tensorflowpytorch人工智能
【ShuQiHere】在深度学习中,GPU的使用对于加速模型训练至关重要。然而,对于许多刚刚入门的小白来说,如何在TensorFlow和PyTorch中指定使用GPU进行训练可能会感到困惑。在本文中,我将详细介绍如何在这两个主流的深度学习框架中指定使用GPU进行训练,并确保每一个步骤都简单易懂,跟着我的步骤来,你也能轻松上手!1.安装所需库首先,确保你已经安装了TensorFlow或PyTorch
- 项目实战 ---- 商用落地视频搜索系统(10)---后台搜索Cache优化
PhoenixAI8
AIPython商用视频搜索系统vectordbmilvusrediscache
目录背景技术实现策略视频预处理阶段的cache技术视频搜索阶段的cache技术技术实现预处理阶段cache策略实现逻辑代码运行结果问题及注意点搜索阶段cache策略实现系统配置层面逻辑低版本GPUCPU本项目的配置高版本描述goahead策略cache加载策略本项目配置应用层搜索参数的配置配置项本项目的实际配置背景但目前为止,视频搜索系统已经可以正常使用和运转。并且他是基于多策略搜索算法的,能够在
- TensorFlow的基本概念以及使用场景
张柏慈
决策树
TensorFlow是一个机器学习平台,用于构建和训练机器学习模型。它使用图形表示计算任务,其中节点表示数学操作,边表示计算之间的数据流动。TensorFlow的主要特点包括:1.多平台支持:TensorFlow可以运行在多种硬件和操作系统上,包括CPU、GPU和移动设备。2.自动求导:TensorFlow可以自动计算模型参数的梯度,通过优化算法更新参数,以提高模型的准确性。3.分布式计算:Ten
- RTX 4090深度学习性能实测奉上!模型训练可提升60~80%
赋创小助手
服务器深度学习人工智能图像处理自动驾驶
近期,我们对RTX4090涡轮版进行了完整的整机测试,本篇文章将分别围绕单卡,4卡,8卡RTX4090性能测试结果展开分享,以全面评估其相比上代RTX30系列的性能优势。首先让我们一起看看本次测试的硬件配置。测试硬件配置简单介绍一下本次使用的平台为超微SYS-420GP-TNR,这款GPU系统针对AI和图形密集型工作负载的灵活设计,4U双处理器(第三代英特尔®至强®),双根GPU系统,最多10个P
- 深度学习的零碎知识点
csdn_now
深度学习人工智能
显卡内存什么是显卡内存简单来说就是,Windows会在物理显存/「专用GPU内存」不够用或只有集成显卡的情况下,将物理内存RAM当作GPU的虚拟显存/「共享GPU内存」来使用。什么是Windows「共享GPU内存」,它与VRAM有什么不同(sysgeek.cn)平常说的显卡内存就是【专用GPU内存】。如何查看内存大小Win10任务管理器中的"专用GPU内存"是怎么回事?“共享GPU内存”又是什么?
- GPU版pytorch安装
普通攻击往后拉
pythontips神经网络基础模型关键点
由于经常重装系统,导致电脑的环境需要经常重新配置,其中尤其是cudatorch比较难以安装,因此记录一下安装GPU版本torch的过程。1)安装CUDAtoolkit这个可以看做是N卡所有cuda计算的基础,一般都会随驱动的更新自动安装,但是不全,仍然需要安装toolkit,并不需要先看已有版本是哪个,反正下载完后会自动覆盖原有的cuda。下载网站两个:国内网站:只能下载最新的toolkit,但是
- 人工智能-GPU版本机器学习、深度学习模型安装
bw876720687
人工智能机器学习深度学习
背景1、在有Nvidia-GPU的情况下模型使用cuda加速计算,但是很有多模型的GPU和CPU版本安装方式不同,如何安装lgb\cat\xgb.2、为了让代码有普适性,如何自适应环境当中的设备进行CPU或者GPU的调整?解决方案问题一:安装GPU版本的LightGBMLightGBM默认不会安装GPU支持版,需要手动编译以启用GPU。以下是在Linux和Windows上编译GPU版本LightG
- 入门篇,带你了解CPU, GPU, TPU, NPU, DPU
今夕是何年,
视觉算法部署深度学习算法人工智能
目录CPU(中央处理器)GPU(图形处理器)TPU(张量处理单元)NPU(神经网络处理器)DPU(数据处理器)CPU(中央处理器)专业介绍:CPU是计算机系统的核心,负责执行操作系统和应用程序的指令。它由多个核心组成,每个核心可以独立执行任务。CPU的设计重点是处理复杂的逻辑运算和顺序任务,如分支预测、指令调度等。现代CPU通常包含多个层级的缓存(如L1、L2和L3缓存),以减少访问主存储器的延迟
- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- 鸿蒙(API 12 Beta6版)GPU加速引擎服务【自适应VRS】
移动开发技术栈
鸿蒙开发harmonyos华为openharmony鸿蒙鸿蒙系统VRS引擎
XEngineKit提供自适应VRS功能,其通过合理分配画面的计算资源,视觉无损降低渲染频次,使不同的渲染图像使用不同的渲染速率,能够有效提高渲染性能。接口说明以下接口为自适应VRS设置接口,如要使用更丰富的设置和查询接口。接口名描述constGLubyte*HMS_XEG_GetString(GLenumname)XEngineGLES扩展特性查询接口。GL_APICALLvoidGL_APIE
- 安装tensorflow2.5.0 发现 tensorflow 和 numba 两者对应Numpy版本冲突
GJK_
tensorflownumpy人工智能
问题:python3.8安装tensorflow2.5.0发现tensorflow和numba两者对应Numpy版本冲突tensorflow-gpu2.5.0requiresnumpy~=1.19.2numba0.58.1requiresnumpy=1.22解决方法:将numba降低版本为0.53pipinstallnumba==0.53再将numpy版本改为1.19.2pipinstallnum
- 本地部署大语言模型详细讲解
程序员小羊!
杂文语言模型人工智能自然语言处理
大家好,我是程序员小羊!前言:本地部署大语言模型(LLM,LargeLanguageModel)需要相应的硬件资源和技术栈支持,如GPU计算能力、大量内存、存储空间,以及模型部署框架。以下是如何在本地部署大语言模型的详细解释,包括选择模型、硬件需求、安装必要的软件和工具、下载和配置模型、以及优化运行性能的建议。一、前期准备1.硬件需求部署大语言模型的硬件要求主要取决于模型的大小和运行任务的复杂度。
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分