tensorflow学习笔记(十一):seq2seq Model

seq2seq Model

源码地址

调用外部的函数介绍

tf.sampled_softmax_loss()

tf.sampled_softmax_loss()中调用了_compute_sampled_logits() 关于__compute_sampled_logits()

#此函数和nce_loss是差不多的, 取样求loss
def sampled_softmax_loss(weights, #[num_classes, dim] biases, #[num_classes] inputs, #[batch_size, dim] labels, #[batch_size, num_true] num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, partition_strategy="mod", name="sampled_softmax_loss"):
#return: [batch_size]

**关于参数labels:一般情况下,num_true为1, labels的shpae为[batch_size, 1]。假设我们有1000个
类别, 使用one_hot形式的label的话, 我们的labels的shape是[batch_size, num_classes]。显然,如果
num_classes非常大的话,会影响计算性能。所以,这里采用了一个简化的方式,即:使用3代表了[0,0,0,1,0….]**

tf.nn.seq2seq.embedding_attention_seq2seq()

创建了input embedding matrix 和 output embedding matrix

def embedding_attention_seq2seq(encoder_inputs, #[T, batch_size] decoder_inputs, #[out_T, batch_size] cell, num_encoder_symbols, num_decoder_symbols, embedding_size, num_heads=1, #只采用一个read head output_projection=None, feed_previous=False, dtype=None, scope=None, initial_state_attention=False):
#output_projection: (W, B) W:[output_size, num_decoder_symbols]
#B: [num_decoder_symbols] 

(1)这个函数创建了一个inputs 的 embedding matrix.
(2)计算了encoder的 output,并保存起来,用于计算attention

encoder_cell = rnn_cell.EmbeddingWrapper(
      cell, embedding_classes=num_encoder_symbols,
      embedding_size=embedding_size)# 创建了inputs的 embedding matrix
  encoder_outputs, encoder_state = rnn.rnn(
      encoder_cell, encoder_inputs, dtype=dtype) #return [T ,batch_size,size]

(3)生成attention states

  top_states = [array_ops.reshape(e, [-1, 1, cell.output_size])
                for e in encoder_outputs]  # T * batch_size * 1 * size
  attention_states = array_ops.concat(1, top_states) # batch_size*T*size

(4)剩下的工作交给embedding_attention_decoder,embedding_attention_decoder中创建了decoder的embedding matrix

# Decoder.
  output_size = None
  if output_projection is None:
    cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
    output_size = num_decoder_symbols

  if isinstance(feed_previous, bool):
    return embedding_attention_decoder(
        decoder_inputs,
        encoder_state,
        attention_states,
        cell,
        num_decoder_symbols,
        embedding_size,
        num_heads=num_heads,
        output_size=output_size,
        output_projection=output_projection,
        feed_previous=feed_previous,
        initial_state_attention=initial_state_attention)

tf.nn.rnn_cell.EmbeddingWrapper()

embedding_attention_seq2seq中调用了这个类
使用了这个类之后,rnn 的inputs就可以是[batch_size]了,里面保存的是word的id。
此类就是在 cell 前 加了一层embedding

class EmbeddingWrapper(RNNCell):
  def __init__(self, cell, embedding_classes, embedding_size, initializer=None):
  def __call__(self, inputs, state, scope=None):#生成embedding矩阵[embedding_classes,embedding_size]
  #inputs: [batch_size, 1]
  #return : (output, state)

tf.nn.rnn_cell.OutputProgectionWrapper()

将rnn_cell的输出映射成想要的维度

class OutputProjectionWrapper(RNNCell):
  def __init__(self, cell, output_size): # output_size:映射后的size
  def __call__(self, inputs, state, scope=None):
#init 返回一个带output projection的 rnn_cell

tf.nn.seq2seq.embedding_attention_decoder()

#生成embedding matrix :[num_symbols, embedding_size]
def embedding_attention_decoder(decoder_inputs, # T*batch_size initial_state, attention_states, cell, num_symbols, embedding_size, num_heads=1, output_size=None, output_projection=None, feed_previous=False, update_embedding_for_previous=True, dtype=None, scope=None, initial_state_attention=False):
#核心代码
  embedding = variable_scope.get_variable("embedding",
                                          [num_symbols, embedding_size])  #output embedding
  loop_function = _extract_argmax_and_embed(
      embedding, output_projection,
      update_embedding_for_previous) if feed_previous else None
  emb_inp = [
      embedding_ops.embedding_lookup(embedding, i) for i in decoder_inputs]
  return attention_decoder(
      emb_inp,
      initial_state,
      attention_states,
      cell,
      output_size=output_size,
      num_heads=num_heads,
      loop_function=loop_function,
      initial_state_attention=initial_state_attention)

可以看到,此函数先为 decoder symbols 创建了一个embedding矩阵。然后定义了loop_function。
emb_in是embedded input :[T, batch_size, embedding_size]
函数的主要工作还是交给了attention_decoder()

tf.nn.attention_decoder()
def attention_decoder(decoder_inputs, #[T, batch_size, input_size] initial_state, #[batch_size, cell.states] attention_states, #[batch_size , attn_length , attn_size] cell, output_size=None, num_heads=1, loop_function=None, dtype=None, scope=None, initial_state_attention=False):

论文中,在计算attention distribution的时候,提到了三个公式

(1)uti=vTtanh(W1hi+W2dt)

(2)sti=softmax(ati)

(3)d=i=1TAstihi

其中, W1 维度是[attn_vec_size, size], hi :[size,1], 我们日常表示输入数据,都是用列向量表示,但是在tensorflow中,趋向用行向量表示。在这个函数中,为了计算 W1hi , 使用了卷积的方式。

hidden = array_ops.reshape(
      attention_states, [-1, attn_length, 1, attn_size]) #[batch_size * T * 1 * input_size]
  hidden_features = []
  v = []
  attention_vec_size = attn_size  # Size of query vectors for attention.
  for a in xrange(num_heads):
    k = variable_scope.get_variable("AttnW_%d" % a,
                                    [1, 1, attn_size, attention_vec_size])
    hidden_features.append(nn_ops.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
    v.append(
        variable_scope.get_variable("AttnV_%d" % a, [attention_vec_size])) #attention_vec_size = attn_size

使用conv2d之后,返回的tensor的形状是[batch_size, attn_length, 1, attention_vec_size]
此函数是这么求 W2dt si 的。

     y = linear(query, attention_vec_size, True)
     y = array_ops.reshape(y, [-1, 1, 1, attention_vec_size])
     # Attention mask is a softmax of v^T * tanh(...).
     s = math_ops.reduce_sum(
         v[a] * math_ops.tanh(hidden_features[a] + y), [2, 3]) #[batch_size, attn_length, 1, attn_size]
     a = nn_ops.softmax(s) #s" [batch_size * attn_len]
     # Now calculate the attention-weighted vector d.
     d = math_ops.reduce_sum(
         array_ops.reshape(a, [-1, attn_length, 1, 1]) * hidden,
         [1, 2])
     ds.append(array_ops.reshape(d, [-1, attn_size]))

y=W2dt,d=d

def rnn()

from tensorflow.python.ops import rnn
rnn.rnn()
def rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None):
#inputs: A length T list of inputs, each a `Tensor` of shape`[batch_size, input_size]`
#sequence_length: [batch_size], 指定sample 序列的长度
#return : (outputs, states), outputs: T*batch_size*output_size. states:batch_size*state

seq2seqModel

  • 创建映射参数 proj_w, proj_b
  • 声明:sampled_loss,看了word2vec的就会理解
  • 声明:seq2seq_f(),构建了inputs的embedding和outputs的embedding,进行核心计算
  • 使用model_with_buckets(),model_with_buckets中调用了seq2seq_f和 sampled_loss

model_with_buckets()

调用方法 tf.nn.seq2seq.model_with_buckets()

def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, buckets, seq2seq, softmax_loss_function=None, per_example_loss=False, name=None):
"""Create a sequence-to-sequence model with support for bucketing. The seq2seq argument is a function that defines a sequence-to-sequence model, e.g., seq2seq = lambda x, y: basic_rnn_seq2seq(x, y, rnn_cell.GRUCell(24)) Args: encoder_inputs: A list of Tensors to feed the encoder; first seq2seq input. decoder_inputs: A list of Tensors to feed the decoder; second seq2seq input. targets: A list of 1D batch-sized int32 Tensors (desired output sequence). weights: List of 1D batch-sized float-Tensors to weight the targets. buckets: A list of pairs of (input size, output size) for each bucket. seq2seq: A sequence-to-sequence model function; it takes 2 input that agree with encoder_inputs and decoder_inputs, and returns a pair consisting of outputs and states (as, e.g., basic_rnn_seq2seq). softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch to be used instead of the standard softmax (the default if this is None). per_example_loss: Boolean. If set, the returned loss will be a batch-sized tensor of losses for each sequence in the batch. If unset, it will be a scalar with the averaged loss from all examples. name: Optional name for this operation, defaults to "model_with_buckets". Returns: A tuple of the form (outputs, losses), where: outputs: The outputs for each bucket. Its j'th element consists of a list of 2D Tensors. The shape of output tensors can be either [batch_size x output_size] or [batch_size x num_decoder_symbols] depending on the seq2seq model used. losses: List of scalar Tensors, representing losses for each bucket, or, if per_example_loss is set, a list of 1D batch-sized float Tensors. Raises: ValueError: If length of encoder_inputsut, targets, or weights is smaller than the largest (last) bucket. """

记住,tensorflow的编码方法是:先构图,再训练。训练是根据feed确定的

你可能感兴趣的:(tensorflow学习笔记(十一):seq2seq Model)