- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《赛题名称》基于QuickRNet的TPU超分模型部署巴黎欧莱雅林松智能应用业务部算法工程师中信科移动中国-北京
[email protected]团队简介巴黎欧莱雅团队包含一个队长和零个队员。队长林松,研究生学历,2019-2022在中国矿业大学(北京)攻读硕士学位,于2022年7月加入中信科移动公司,现在在智能应用业务部负责视觉AI算法的落地部署,是一名算法工程师,主要擅长
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于Real-ESRGAN的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》洋洋很棒李鹏飞算法工程师中国-烟台
[email protected]团队简介本人从事工业、互联网场景传统图像算法及深度学习算法开发、部署工作。其中端侧算法开发及部署工作5年时间。摘要本文是《基于TPU平台实现超分辨率重建模型部署》方案中算法方案的说明。本作品算法模型选用的是Real-ESRGAN。Real-ESRGAN是基
- 使用开源 Upscayl 工具放大图片
winfredzhang
人工智能Upscayl放大开源
Upscayl是一个基于人工智能的图像放大工具,可以用来将低分辨率的图片放大到高分辨率。Upscayl使用了一种称为超分辨率重建的技术,可以生成逼真的高分辨率图像。在本教程中,我们将介绍如何使用Upscaly工具放大图片。准备工作下载:https://github.com/upscayl/upscayl/releases/download/v2.9.5/upscayl-2.9.5-win.exe安
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏
[email protected]吕欢欢计算机科学与技术系博士南京大学中国-江苏
[email protected]张凯铭物理学系本科四川大学中国-四川283574
- TPU编程竞赛|算丰助力2023 CCF大数据与计算智能大赛!
算能开发者社区
人工智能算法
目录赛题介绍赛题背景赛题任务赛程安排初赛阶段2023/09/25-11/27决赛阶段2023/11/28-12/17评分机制奖项设置赛题奖项赛事奖项近日,第十一届2023CCF大数据与计算智能大赛(简称CCFBDCI)正式启动报名,本次大赛含竞技赛题、数字安全公开赛等十余道竞技及训练赛题。算丰不仅为本次大赛提供了赛题「基于TPU平台实现视频超分辨率重建模型部署」,也为参赛选手提供丰富的云端TPU资
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案
算能开发者社区
大数据超分辨率重建人工智能
- 模型实战(18)之C++ - tensorRT部署GAN模型实现人脸超分辨重建
明月醉窗台
#深度学习实战例程c++生成对抗网络人工智能神经网络visualstudio
模型实战(18)之C++-tensorRT部署GAN模型实现人脸超分辨重建一个实现人脸超分辨率重建的demo支持StyleGAN:GPENorGFPGAN通过C++-tensorrt快速部署,推理速度每帧在RTX3090上5.5ms+,RTX3050上10ms+下边是实现效果(图片来源于网络search,如若侵权,联系删除)下边给出实现步骤:1.模型转换下载模型至本地Downloadthemode
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
Snu77
YOLOv8系列专栏YOLO人工智能深度学习python计算机视觉超分辨率重建目标检测
一、本文介绍本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的结果(这个注意力机制挺复杂的光代码就700+行),但是效果挺好的也是10
- 超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)
佐咖
超分辨率重建Pytorch深度学习超分辨率重建图像处理pythonpytorch
目录一、源码包下载二、数据集准备三、预训练权重文件四、训练环境五、训练5.1超参数修改5.2训练模型5.2.1命令方式训练5.2.2Configuration配置参数方式训练5.3模型保存六、推理测试6.1超参数修改6.2测试6.2.1命令方式测试6.2.2Configuration配置参数方式测试6.3测试结果6.4推理速度七、总结一、源码包下载源码包有官网提供的和我自己修改过代码提供的,建议学
- 人工智能超分辨率重建:揭秘图像的高清奇迹
鳗小鱼
人工智能资源分享(resource)人工智能超分辨率重建图像处理rnncnn神经网络机器学习
导言人工智能超分辨率重建技术,作为图像处理领域的一项重要创新,旨在通过智能算法提升图像的分辨率,带来更为清晰和细致的视觉体验。本文将深入研究人工智能在超分辨率重建方面的原理、应用以及技术挑战。1.超分辨率重建的基本原理单图超分辨率:利用深度学习模型,通过学习低分辨率图像与高分辨率图像的映射关系,实现对单张图像的重建。多图融合:结合多个视角或时间点的图像信息,进一步提升图像的清晰度。2.应用领域及典
- 视频超分辨率重建
zi_y_uan
超分辨率重建人工智能
使用基于GAN的超分辨率模型对视频进行超清修复,项目GitHub链接如下:https://github.com/emptysoal/VideoRestore如何使用具体参考链接中的README。
- 超分辨率重建
金戈鐡馬
超分辨率重建人工智能计算机视觉深度学习图像处理
意义客观世界的场景含有丰富多彩的信息,但是由于受到硬件设备的成像条件和成像方式的限制,难以获得原始场景中的所有信息。而且,硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代,在卫星遥感、医学影像、多媒体视频等领域中对图像质量的要求越来越高,人们不断寻求更高质量和更高分辨率的图像,来满足日益增长的需求。空间分辨率的大小是衡量图像质量的一个重要指标,也是将图像应用到实
- 基于深度学习的超分辨率综述
teacher_ma_
计算机视觉深度学习人工智能神经网络cnn
1.单图像超分辨率重建SISR方法框架由两部分组成,非线性映射学习和上采样模块。非线性映射学习模块负责完成LR到HR的映射,这过程中利用损失函数引导和监督学习的进程;上采样模块实现重建图像的放大,两个模块协同完成SISR1.1超分框架(1)前端上采样超分框架前端上采样避免在低维进行映射学习,降低了学习难度,但噪声和模糊也被放大,并且高维卷积运算增加计算量,消耗更多资源(2)后端上采样超分框架该框架
- 基于深度学习的单帧图像超分辨率重建综述
小蒋的技术栈记录
深度学习深度学习超分辨率重建人工智能
论文标题:基于深度学习的单帧图像超分辨率重建综述作者:吴靖,叶晓晶,黄峰,陈丽琼,王志锋,刘文犀发表日期:2022年9月阅读日期:2023.11.18研究背景:图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,
- 「需求广场」需求词更新明细(十六)
CSDN文库小助手
大数据pythonjavajavascriptmatlab
进入需求广场,选取你擅长的领域开始上传资源、获取流量吧!2022.7.12上线需求词:No.需求词No.需求词No.需求词1超分辨率重建95idea快捷键189pid调参2视频编解码96linux切换到root用户190openmv与arduino串口通信3fpga开发97c++编译器191git教程4浏览器插件98springboot注解192matlab解多项式方程5tomcat安装及配置教程
- 【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程
RS迷途小书童
Python深度学习超分辨率重建计算机视觉人工智能深度学习图像处理
1前言图像超分是一种图像处理技术,旨在提高图像的分辨率,使其具有更高的清晰度和细节。这一技术通常用于图像重建、图像恢复、图像增强等领域,可以帮助我们更好地理解和利用图像信息。图像超分技术可以通过多种方法实现,包括插值算法、深度学习等。其中,深度学习的方法在近年来得到了广泛的关注和应用。基于深度学习的图像超分技术,可以利用深度神经网络学习图像的高频部分,从而提高了图像的分辨率和清晰度。目前应用较多的
- 【图像超分辨率重建】——EnhanceNet论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建计算机视觉人工智能
2017-EnhanceNet:SingleImageSuper-ResolutionThroughAutomatedTextureSynthesis(EnhanceNet)基本信息作者:MehdiS.M.SajjadiBernhardSch¨olkopfMichaelHirsch期刊:ICCV引用:*摘要:单一图像超分辨率是指从单一低分辨率输入推断出高分辨率图像的任务。传统上,这项任务的算法性能
- 基于深度学习的图像超分辨率重建
wjhua_223
#超分辨率人工智能技术方向
最近开展图像超分辨率(ImageSuperResolution)方面的研究,做了一些列的调研,并结合本人的理解总结成本博文~(本博文仅用于本人的学习笔记,不做商业用途)本博文涉及的paper已经打包,供各位看客下载哈~https://download.csdn.net/download/gwplovekimi/10728916目录超分辨率(SuperResolution,SR)传统的图像超分辨率重
- 基于多尺度分形残差注意力网络的超分辨率重建算法
Van-bo
1024程序员节
1.引言深度神经网络可以显著提高超分辨率的质量,但现有方法难以充分利用低分辨率尺度特征和通道信息,从而阻碍了卷积神经网络的表达能力。针对此类问题,本章提出了一种多尺度分形残差注意力网络(Multi-scaleFractalResidualAttentionNetwork,MFRAN)。具体而言,MFRAN由分形残差块(FractalResidualBlock,FRB)、双路增强通道注意力(Dual
- 超分辨率重建数据集制作:生成低分辨率数据集
Alocus_
python超分辨率重建超分辨率重建人工智能图像处理
目录背景代码结果其他注意:超分主流有两种BI、BD。1.实际上公认的是使用MATLAB进行插值。2.Bicubic(双三次插值)方式。(BI方式)3.高斯模糊+双三次插值是另一种常用方式(BD方式)。4.目前有使用Python实现的上述BI、BD,但或多或少还是有差异。这里python实现必定和matlab实现之间有差别,使用时注意。(希望你务必看一下这一篇文章:图像/视频超分之降质过程)(我写一
- AI影像修复及图像超分辨率
理想失速
计算机视觉人工智能
AI图像修复软件主要包含人脸修复、图像超分等功能。人脸修复功能主要对图像上的人脸进行识别和修复,从模糊、缺损、噪声图像中恢复高质量人脸图像。图像超分功能主要对图像进行超分辨率重建,将低分辨率图像处理为高分辨率图像。链接:https://pan.baidu.com/s/1epX3FKdTGNyTe0c8LoIPCQ?pwd=9knh1、人脸修复功能—>人脸修复,启动人脸修复界面。选择图像文件和输出路
- CVPR 2018
来自吐槽星
深度学习在图像超分辨率重建中的应用http://cvmart.net/community/article/detail/11使用CNN生成图像先验,实现更广泛场景的盲图像去模糊http://cvmart.net/community/article/detail/206用u-net训练一个模型:输入是一个静态的帧,输出的预测的五帧光流信息,模型在youtube数据集上训练。https://arxiv
- 【代码实践】HAT代码Window平台下运行实践记录
一的千分之一
【代码实践】python深度学习
HAT是CVPR2023上的自然图像超分辨率重建论文《activatingMorePixelsinImageSuper-ResolutionTransformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题,供大家参考。环境安装参考官方代码,进行环境安装pipinstall-rreq
- 深度学习在图像识别领域还有哪些应用?
matlabgoodboy
深度学习人工智能
深度学习在图像识别领域的应用非常广泛,除了之前提到的图像分类、目标检测、语义分割和图像生成,还有其他一些应用。图像超分辨率重建:深度学习技术可以用于提高图像的分辨率,例如通过使用生成对抗网络(GAN)和变分自编码器(VAE)等技术,可以将低分辨率的图像转换为高分辨率的图像,从而提高了图像的清晰度和质量。图像风格迁移:深度学习可以用于将一张图像的风格应用到另一张图像上,例如使用GAN模型可以将一张照
- 【论文阅读】ICCV2021|超分辨重建论文整理和阅读
一的千分之一
【论文阅读】transformer深度学习计算机视觉
本文主要对ICCV2021中超分辨率重建相关论文进行整理与阅读。1.LearningASingleNetworkforScale-ArbitrarySuper-ResolutionPaper:https://arxiv.org/pdf/2004.03791.pdfCode:https://github.com/The-Learning本论文聚焦于非整数尺度和非对称的SR问题,如上采样1.5x2.5
- AI数字人:语音驱动面部模型及超分辨率重建Wav2Lip-HD
智慧医疗探索者
AI数字人技术人工智能超分辨率重建图像处理深度学习
1Wav2Lip-HD项目介绍数字人打造中语音驱动人脸和超分辨率重建两种必备的模型,它们被用于实现数字人的语音和图像方面的功能。通过Wav2Lip-HD项目可以快速使用这两种模型,完成高清数字人形象的打造。项目代码地址:github地址1.1语音驱动面部模型wav2lip语音驱动人脸技术主要是通过语音信号处理和机器学习等技术,实现数字人的语音识别和语音合成,从而实现数字人的语音交互功能。同时,结合
- 【图像超分辨率重建】——SwinIR论文阅读笔记
沉潜于
超分辨率重建笔记人工智能
SwinIR:ImageRestorationUsingSwinTransformer基本信息:期刊:ICCV2021摘要:图像恢复是一个长期存在的低级视觉问题,其目的是从低质量图像(例如,缩小、噪声和压缩图像)。虽然最先进的图像恢复方法是基于卷积神经网络,但很少有人尝试使用Transformers,这些Transformers在高级视觉任务中表现出令人印象深刻的性能。在本文中,我们提出了一个强基
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息