Spark组件之SparkR学习1--安装与测试

更多代码请见:https://github.com/xubo245/SparkLearning


环境:

ubuntu:Spark 1.5.2(已装)、R3.2.1

Window: Rstudio


1Ubuntu下配置

1.1.R安装:

Spark安装后直接启动SparkR会报错,R找不到,故需要装R

1.1.1R下载:

https://cran.r-project.org/src/base/R-3/

或者:

https://cran.rstudio.com/src/base/R-3/


1.1.2安装:解压后

./configure
make
sudo make install

卸载:

sudo make uninstall

1.1.3 环境变量配置

vi /etc/profile
source  /etc/profile

再启动SparkR就可以进入SparkR shell中了


1.2使用

1.2.1启动:

./bin/sparkR

sparkR里面已经初始化了sc等:

sc <- sparkR.init()
sqlContext <- sparkRSQL.init(sc)


1.2.2 examples:

1.2.2.1 R自带faithful数据集:

> df <- createDataFrame(sqlContext, faithful) 
> head(df)
  eruptions waiting
1     3.600      79
2     1.800      54
3     3.333      74
4     2.283      62
5     4.533      85
6     2.883      55

1.2.2.2 json数据读入
需要先就spark目录下的examples上传到hdfs的根目录下,或者自定义目录

> people <- read.df(sqlContext, "/examples/src/main/resources/people.json", "json")
> head(people)
  age    name
1  NA Michael
2  30    Andy
3  19  Justin
> printSchema(people)
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)

1.2.2.3存储dataFrame文件:

> write.df(people, path="/xubo/spark/people.parquet", source="parquet", mode="overwrite")
NULL

前后:

hadoop@Master:~$ hadoop fs -ls /xubo/spark
Found 5 items
drwxr-xr-x   - hadoop supergroup          0 2016-03-29 21:24 /xubo/spark/data
drwxr-xr-x   - hadoop supergroup          0 2016-04-14 15:55 /xubo/spark/dataSQL
drwxr-xr-x   - hadoop supergroup          0 2016-04-14 16:45 /xubo/spark/examples
drwxr-xr-x   - xubo   supergroup          0 2016-04-15 10:56 /xubo/spark/file
drwxr-xr-x   - xubo   supergroup          0 2016-03-29 15:32 /xubo/spark/output
hadoop@Master:~$ hadoop fs -ls /xubo/spark
Found 6 items
drwxr-xr-x   - hadoop supergroup          0 2016-03-29 21:24 /xubo/spark/data
drwxr-xr-x   - hadoop supergroup          0 2016-04-14 15:55 /xubo/spark/dataSQL
drwxr-xr-x   - hadoop supergroup          0 2016-04-14 16:45 /xubo/spark/examples
drwxr-xr-x   - xubo   supergroup          0 2016-04-15 10:56 /xubo/spark/file
drwxr-xr-x   - xubo   supergroup          0 2016-03-29 15:32 /xubo/spark/output
drwxr-xr-x   - hadoop supergroup          0 2016-04-20 00:34 /xubo/spark/people.parquet
hadoop@Master:~$ hadoop fs -ls /xubo/spark/people.parquet
Found 5 items
-rw-r--r--   3 hadoop supergroup          0 2016-04-20 00:34 /xubo/spark/people.parquet/_SUCCESS
-rw-r--r--   3 hadoop supergroup        277 2016-04-20 00:34 /xubo/spark/people.parquet/_common_metadata
-rw-r--r--   3 hadoop supergroup        750 2016-04-20 00:34 /xubo/spark/people.parquet/_metadata
-rw-r--r--   3 hadoop supergroup        537 2016-04-20 00:34 /xubo/spark/people.parquet/part-r-00000-9d377482-1bb6-46c3-bb19-d107a7da660a.gz.parquet
-rw-r--r--   3 hadoop supergroup        531 2016-04-20 00:34 /xubo/spark/people.parquet/part-r-00001-9d377482-1bb6-46c3-bb19-d107a7da660a.gz.parquet

1.2.2.4 对DataFrame的操作:

> df <- createDataFrame(sqlContext, faithful) 
> df
DataFrame[eruptions:double, waiting:double]
> head(select(df, df$eruptions))
  eruptions
1     3.600
2     1.800
3     3.333
4     2.283
5     4.533
6     2.883
> head(select(df, "eruptions"))
  eruptions
1     3.600
2     1.800
3     3.333
4     2.283
5     4.533
6     2.883
> head(filter(df, df$waiting < 50))
  eruptions waiting
1     1.750      47
2     1.750      47
3     1.867      48
4     1.750      48
5     2.167      48
6     2.100      49


1.2.2.5   Grouping, Aggregation

> head(summarize(groupBy(df, df$waiting), count = n(df$waiting)))
  waiting count                                                                 
1      81    13
2      60     6
3      93     2
4      68     1
5      47     4
6      80     8
> waiting_counts <- summarize(groupBy(df, df$waiting), count = n(df$waiting))
> head(arrange(waiting_counts, desc(waiting_counts$count)))
  waiting count                                                                 
1      78    15
2      83    14
3      81    13
4      77    12
5      82    12
6      84    10


1.2.2.6   Operating on Columns

> df$waiting_secs <- df$waiting * 60
> head(df)
  eruptions waiting waiting_secs
1     3.600      79         4740
2     1.800      54         3240
3     3.333      74         4440
4     2.283      62         3720
5     4.533      85         5100
6     2.883      55         3300

1.2.2.7 Running SQL Queries from SparkR

> people <- read.df(sqlContext, "/examples/src/main/resources/people.json", "json")
> registerTempTable(people, "people")
> teenagers <- sql(sqlContext, "SELECT name FROM people WHERE age >= 13 AND age <= 19")
> head(teenagers)
    name
1 Justin

> df <- createDataFrame(sqlContext, iris)
Warning messages:
1: In FUN(X[[i]], ...) :
  Use Sepal_Length instead of Sepal.Length  as column name
2: In FUN(X[[i]], ...) :
  Use Sepal_Width instead of Sepal.Width  as column name
3: In FUN(X[[i]], ...) :
  Use Petal_Length instead of Petal.Length  as column name
4: In FUN(X[[i]], ...) :
  Use Petal_Width instead of Petal.Width  as column name
> model <- glm(Sepal_Length ~ Sepal_Width + Species, data = df, family = "gaussian")
> head(df)
  Sepal_Length Sepal_Width Petal_Length Petal_Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
> summary(model)
$coefficients
                     Estimate
(Intercept)         2.2513930
Sepal_Width         0.8035609
Species__versicolor 1.4587432
Species__virginica  1.9468169

> predictions <- predict(model, newData = df)
> head(select(predictions, "Sepal_Length", "prediction"))
  Sepal_Length prediction
1          5.1   5.063856
2          4.9   4.662076
3          4.7   4.822788
4          4.6   4.742432
5          5.0   5.144212
6          5.4   5.385281

由于没有搭建hive,故没有尝试hive的操作


2.Windows下配置

2.1R安装

2.1.1 下载:

https://cran.r-project.org/mirrors.html
https://mirrors.tuna.tsinghua.edu.cn/CRAN/


其他系统:http://mirror.bjtu.edu.cn/cran/


2.1.2安装:简单。。。

2.2 RStudio安装:windows 7

2.2.1 下载:

https://www.rstudio.com/products/rstudio/download/


2.2.2安装:简单...


2.3 配置RStudio与SparkR

2.3.1下载编译好的spark到本地,比如:spark-1.5.2-bin-hadoop2.6.tar

2.3.2在RStudio中导入:

# Set this to where Spark is installed
Sys.setenv(SPARK_HOME="D:/1win7/java/spark-1.5.2-bin-hadoop2.6")
# This line loads SparkR from the installed directory
.libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R","lib"), .libPaths()))
library(SparkR)
<pre name="code" class="plain">sc <- sparkR.init(master="local")
sqlContext <- sparkRSQL.init(sc)

 测试: 
 

print("SparkR")
df <- createDataFrame(sqlContext, faithful) 
head(df)
print(df)
people <- read.df(sqlContext, "D:/all/R/examples/src/main/resources/people.json", "json")
head(people)
print(people)

print("end")

输出:

> source('D:/all/R/1.R')
[1] "SparkR"
DataFrame[eruptions:double, waiting:double]
DataFrame[age:bigint, name:string]
[1] "end"


2.4 RStudio上使用SparkR:

2.4.1 自带数据集:

> df <- createDataFrame(sqlContext, faithful) 
> head(df)
  eruptions waiting
1     3.600      79
2     1.800      54
3     3.333      74
4     2.283      62
5     4.533      85
6     2.883      55


2.4.2 重启需要先stop

> sc <- sparkR.init(sparkPackages="com.databricks:spark-csv_2.11:1.0.3")
Re-using existing Spark Context. Please stop SparkR with sparkR.stop() or restart R to create a new Spark Context
> sqlContext <- sparkRSQL.init(sc)
> sparkR.stop()
> sc <- sparkR.init(sparkPackages="com.databricks:spark-csv_2.11:1.0.3")
Launching java with spark-submit command D:/1win7/java/spark-1.5.2-bin-hadoop2.6/bin/spark-submit.cmd  --packages com.databricks:spark-csv_2.11:1.0.3 sparkr-shell C:\Users\xubo\AppData\Local\Temp\RtmpaGdWr8\backend_porte9c63a41172 
> sqlContext <- sparkRSQL.init(sc)

2.4.3 Json操作,文件在spark里面的examples文件夹

> people <- read.df(sqlContext, "D:/all/R/examples/src/main/resources/people.json", "json")
> head(people)
  age    name
1  NA Michael
2  30    Andy
3  19  Justin

> printSchema(people)
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)

2.4.4 1.R文件运行代码:

# Set this to where Spark is installed
#Sys.setenv(SPARK_HOME="D:/1win7/java/spark-1.5.2-bin-hadoop2.6")
# This line loads SparkR from the installed directory
#.libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R","lib"), .libPaths()))
#library(SparkR)
#sc <- sparkR.init(master="local")
#sqlContext <- sparkRSQL.init(sc)
print("SparkR")
df <- createDataFrame(sqlContext, faithful) 
head(df)
print(df)
people <- read.df(sqlContext, "D:/all/R/examples/src/main/resources/people.json", "json")
head(people)
print(people)
printSchema(people)






print("end")

运行结果:

> source('D:/all/R/1.R')
[1] "SparkR"
DataFrame[eruptions:double, waiting:double]
DataFrame[age:bigint, name:string]
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)
[1] "end"

2.4.5 存储为parquet:

write.df(people, path="D:/all/R/people.parquet", source="parquet", mode="overwrite")

结果:

Spark组件之SparkR学习1--安装与测试_第1张图片

2.4.6 Hive的操作:

> hiveContext <- sparkRHive.init(sc)
> sql(hiveContext, "CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
DataFrame[result:string]
> sql(hiveContext, "LOAD DATA LOCAL INPATH 'D:/all/R/examples/src/main/resources/kv1.txt' INTO TABLE src")
DataFrame[result:string]
> 
> results <- sql(hiveContext, "FROM src SELECT key, value")
> head(results)
  key   value
1 238 val_238
2  86  val_86
3 311 val_311
4  27  val_27
5 165 val_165
6 409 val_409

2.4.7 DataFrame的 操作

> # Create the DataFrame
> df <- createDataFrame(sqlContext, faithful) 
> 
> # Get basic information about the DataFrame
> df
DataFrame[eruptions:double, waiting:double]
> ## DataFrame[eruptions:double, waiting:double]
> 
> # Select only the "eruptions" column
> head(select(df, df$eruptions))
  eruptions
1     3.600
2     1.800
3     3.333
4     2.283
5     4.533
6     2.883
> ##  eruptions
> ##1     3.600
> ##2     1.800
> ##3     3.333
> 
> # You can also pass in column name as strings 
> head(select(df, "eruptions"))
  eruptions
1     3.600
2     1.800
3     3.333
4     2.283
5     4.533
6     2.883
> 
> # Filter the DataFrame to only retain rows with wait times shorter than 50 mins
> head(filter(df, df$waiting < 50))
  eruptions waiting
1     1.750      47
2     1.750      47
3     1.867      48
4     1.750      48
5     2.167      48
6     2.100      49
> ##  eruptions waiting
> ##1     1.750      47
> ##2     1.750      47
> ##3     1.867      48

2.4.8   Grouping, Aggregation

> # We use the `n` operator to count the number of times each waiting time appears
> head(summarize(groupBy(df, df$waiting), count = n(df$waiting)))
  waiting count
1      81    13
2      60     6
3      93     2
4      68     1
5      47     4
6      80     8
> ##  waiting count
> ##1      81    13
> ##2      60     6
> ##3      68     1
> 
> # We can also sort the output from the aggregation to get the most common waiting times
> waiting_counts <- summarize(groupBy(df, df$waiting), count = n(df$waiting))
> head(arrange(waiting_counts, desc(waiting_counts$count)))
  waiting count
1      78    15
2      83    14
3      81    13
4      77    12
5      82    12
6      84    10
> 
> ##   waiting count
> ##1      78    15
> ##2      83    14
> ##3      81    13

2.4.9  Operating on Columns

> # Convert waiting time from hours to seconds.
> # Note that we can assign this to a new column in the same DataFrame
> df$waiting_secs <- df$waiting * 60
> head(df)
  eruptions waiting waiting_secs
1     3.600      79         4740
2     1.800      54         3240
3     3.333      74         4440
4     2.283      62         3720
5     4.533      85         5100
6     2.883      55         3300
> ##  eruptions waiting waiting_secs
> ##1     3.600      79         4740
> ##2     1.800      54         3240
> ##3     3.333      74         4440

2.4.10 Running SQL Queries from SparkR

> # Load a JSON file
> people <- read.df(sqlContext, "D:/all/R/examples/src/main/resources/people.json", "json")
> 
> # Register this DataFrame as a tabllse.
> registerTempTable(people, "people")
> 
> # SQL statements can be run by using the sql method
> teenagers <- sql(sqlContext, "SELECT name FROM people WHERE age >= 13 AND age <= 19")
> head(teenagers)
    name
1 Justin
> ##    name
> ##1 Justin

2.4.11 Machine Learning

> # Create the DataFrame
> df <- createDataFrame(sqlContext, iris)
Warning messages:
1: In FUN(X[[i]], ...) :
  Use Sepal_Length instead of Sepal.Length  as column name
2: In FUN(X[[i]], ...) :
  Use Sepal_Width instead of Sepal.Width  as column name
3: In FUN(X[[i]], ...) :
  Use Petal_Length instead of Petal.Length  as column name
4: In FUN(X[[i]], ...) :
  Use Petal_Width instead of Petal.Width  as column name
> 
> # Fit a linear model over the dataset.
> model <- glm(Sepal_Length ~ Sepal_Width + Species, data = df, family = "gaussian")
> 
> # Model coefficients are returned in a similar format to R's native glm().
> summary(model)
$coefficients
                     Estimate
(Intercept)         2.2513930
Sepal_Width         0.8035609
Species__versicolor 1.4587432
Species__virginica  1.9468169

> ##$coefficients
> ##                    Estimate
> ##(Intercept)        2.2513930
> ##Sepal_Width        0.8035609
> ##Species_versicolor 1.4587432
> ##Species_virginica  1.9468169
> 
> # Make predictions based on the model.
> predictions <- predict(model, newData = df)
> head(select(predictions, "Sepal_Length", "prediction"))
  Sepal_Length prediction
1          5.1   5.063856
2          4.9   4.662076
3          4.7   4.822788
4          4.6   4.742432
5          5.0   5.144212
6          5.4   5.385281
> ##  Sepal_Length prediction
> ##1          5.1   5.063856
> ##2          4.9   4.662076
> ##3          4.7   4.822788
> ##4          4.6   4.742432
> ##5          5.0   5.144212
> ##6          5.4   5.385281


2.5 记录:开始配置不成功:

> library(SparkR)
Error in library(SparkR) : 不存在叫‘SparkR’这个名字的程辑包
待解决


# Set this to where Spark is installed
Sys.setenv(SPARK_HOME="D:/1win7/java/spark-1.5.2")
# This line loads SparkR from the installed directory
.libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R"), .libPaths()))
library(SparkR)
sc <- sparkR.init(master="local")
sqlContext <- sparkRSQL.init(sc)
df <- createDataFrame(sqlContext, faithful) 
head(df)
print("end")

SparkR从集群编译好的地方下载,然后放到本地



> source('D:/all/R/1.R')
Launching java with spark-submit command D:/1win7/java/spark-1.5.2/bin/spark-submit.cmd   sparkr-shell C:\Users\xubo\AppData\Local\Temp\RtmpwpZOpB\backend_port2cd416031ca9 
Error in sparkR.init(master = "local") : 
  JVM is not ready after 10 seconds

Spark在windows系统中没有转,明天试试编译好的spark

参考:

【1】 http://spark.apache.org/docs/1.5.2/sparkr.html

【2】http://www.csdn.net/article/1970-01-01/2826010

【3】http://files.meetup.com/3138542/SparkR-meetup.pdf

【4】https://github.com/amplab-extras/SparkR-pkg

你可能感兴趣的:(Spark组件之SparkR学习1--安装与测试)