读者可能还记得本系列博客(二)和(六)中 tf.nn 模块,其中最关心的是 conv2d 这个函数。
首先将博客(二) MNIST 例程中 convolutional.py 关键源码列出:
def model(data, train=False): """The Model definition.""" # 2D convolution, with 'SAME' padding (i.e. the output feature map has # the same size as the input). Note that {strides} is a 4D array whose # shape matches the data layout: [image index, y, x, depth]. conv = tf.nn.conv2d(data, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') # Bias and rectified linear non-linearity. relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None): r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors. Given an input tensor of shape `[batch, in_height, in_width, in_channels]` and a filter / kernel tensor of shape `[filter_height, filter_width, in_channels, out_channels]`, this op performs the following: 1. Flattens the filter to a 2-D matrix with shape `[filter_height * filter_width * in_channels, output_channels]`. 2. Extracts image patches from the input tensor to form a *virtual* tensor of shape `[batch, out_height, out_width, filter_height * filter_width * in_channels]`. 3. For each patch, right-multiplies the filter matrix and the image patch vector. In detail, with the default NHWC format, output[b, i, j, k] = sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * filter[di, dj, q, k] Must have `strides[0] = strides[3] = 1`. For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1]`. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`. filter: A `Tensor`. Must have the same type as `input`. strides: A list of `ints`. 1-D of length 4. The stride of the sliding window for each dimension of `input`. Must be in the same order as the dimension specified with format. padding: A `string` from: `"SAME", "VALID"`. The type of padding algorithm to use. use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`. Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ return _op_def_lib.apply_op("Conv2D", input=input, filter=filter, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, name=name)
_op_def_lib 是这样构建的:
def _InitOpDefLibrary(): op_list = op_def_pb2.OpList() text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list) op_def_registry.register_op_list(op_list) op_def_lib = op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib _InitOpDefLibrary.op_list_ascii = """%s""" _op_def_lib = _InitOpDefLibrary()