大数据:Spark Storage(二) 集群下的broadcast

Spark BroadCast

Broadcast 简单来说就是将数据从一个节点复制到其他各个节点,常见用于数据复制到节点本地用于计算,在前面一章中讨论过Storage模块中BlockManager,Block既可以保存在内存中,也可以保存在磁盘中,当Executor节点本地没有数据,通过Driver去获取数据

Spark的官方描述:

A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable
 * cached on each machine rather than shipping a copy of it with tasks. They can be used, for
 * example, to give every node a copy of a large input dataset in an efficient manner. Spark also
 * attempts to distribute broadcast variables using efficient broadcast algorithms to reduce
 * communication cost.

在Broadcast中,Spark只是传递只读变量的内容,通常如果一个变量更新会涉及到多个节点的该变量的数据同步更新,为了保证数据一致性,Spark在broadcast 中只传递不可修改的数据。

Broadcast 只是细粒度化到executor? 在storage前面的文章中讨论过BlockID 是以executor和实际的block块组合的,executor 是执行submit的任务的子worker进程,随着任务的结束而结束,对executor里执行的子任务是同一进程运行,数据可以进程内直接共享(内存),所以BroadCast只需要细粒度化到executor就足够了

TorrentBroadCast

Spark在老的版本1.2中有HttpBroadCast,但在2.1版本中就移除了,HttpBroadCast 中实现的原理是每个executor都是通过Driver来获取Data数据,这样很明显的加大了Driver的网络负载和压力,无法解决Driver的单点性能问题。

为了解决Driver的单点问题,Spark使用了Block Torrent的方式。



1. Driver 初始化的时候,会知道有几个executor,以及多少个Block, 最后在Driver端会生成block所对应的节点位置,初始化的时候因为executor没有数据,所有块的location都是Driver 

2. Executor 进行运算的时候,从BlockManager里的获取本地数据,如果本地数据不存在,然后从driver获取数据的位置

 bm.getLocalBytes(pieceId) match {  
       case Some(block) =>  
         blocks(pid) = block  
         releaseLock(pieceId)  
       case None =>  
         bm.getRemoteBytes(pieceId) match {  
           case Some(b) =>  
             if (checksumEnabled) {  
               val sum = calcChecksum(b.chunks(0))  
               if (sum != checksums(pid)) {  
                 throw new SparkException(s"corrupt remote block $pieceId of $broadcastId:" +  
                   s" $sum != ${checksums(pid)}")  
               }  
             }  
             // We found the block from remote executors/driver's BlockManager, so put the block  
             // in this executor's BlockManager.  
             if (!bm.putBytes(pieceId, b, StorageLevel.MEMORY_AND_DISK_SER, tellMaster = true)) {  
               throw new SparkException(  
                 s"Failed to store $pieceId of $broadcastId in local BlockManager")  
             }  
             blocks(pid) = b  
           case None =>  
             throw new SparkException(s"Failed to get $pieceId of $broadcastId")  
         }  

3. Driver里保存的块的位置只有Driver自己有,所以返回executer的位置列表只有driver

  private def getLocations(blockId: BlockId): Seq[BlockManagerId] = {
    if (blockLocations.containsKey(blockId)) blockLocations.get(blockId).toSeq else Seq.empty
  }

4. 通过块的传输通道从Driver里获取到数据

blockTransferService.fetchBlockSync(
          loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()

5. 获取数据后,使用BlockManager.putBytes ->最后使用doPutBytes保存数据

 private def doPutBytes[T](
      blockId: BlockId,
      bytes: ChunkedByteBuffer,
      level: StorageLevel,
      classTag: ClassTag[T],
      tellMaster: Boolean = true,
      keepReadLock: Boolean = false): Boolean = {
   .....
      val putBlockStatus = getCurrentBlockStatus(blockId, info)
      val blockWasSuccessfullyStored = putBlockStatus.storageLevel.isValid
      if (blockWasSuccessfullyStored) {
        // Now that the block is in either the memory or disk store,
        // tell the master about it.
        info.size = size
        if (tellMaster && info.tellMaster) {
          reportBlockStatus(blockId, putBlockStatus)
        }
        addUpdatedBlockStatusToTaskMetrics(blockId, putBlockStatus)
      }
      logDebug("Put block %s locally took %s".format(blockId, Utils.getUsedTimeMs(startTimeMs)))
      if (level.replication > 1) {
        // Wait for asynchronous replication to finish
        try {
          Await.ready(replicationFuture, Duration.Inf)
        } catch {
          case NonFatal(t) =>
            throw new Exception("Error occurred while waiting for replication to finish", t)
        }
      }
      if (blockWasSuccessfullyStored) {
        None
      } else {
        Some(bytes)
      }
    }.isEmpty
  }

6. 在保存数据后同时汇报该Block的状态到Driver 

7. Driver跟新executor 的BlockManager的状态,并且把Executor的地址加入到该BlockID的地址集合中

  private def updateBlockInfo(
      blockManagerId: BlockManagerId,
      blockId: BlockId,
      storageLevel: StorageLevel,
      memSize: Long,
      diskSize: Long): Boolean = {

    if (!blockManagerInfo.contains(blockManagerId)) {
      if (blockManagerId.isDriver && !isLocal) {
        // We intentionally do not register the master (except in local mode),
        // so we should not indicate failure.
        return true
      } else {
        return false
      }
    }

    if (blockId == null) {
      blockManagerInfo(blockManagerId).updateLastSeenMs()
      return true
    }

    blockManagerInfo(blockManagerId).updateBlockInfo(blockId, storageLevel, memSize, diskSize)

    var locations: mutable.HashSet[BlockManagerId] = null
    if (blockLocations.containsKey(blockId)) {
      locations = blockLocations.get(blockId)
    } else {
      locations = new mutable.HashSet[BlockManagerId]
      blockLocations.put(blockId, locations)
    }

    if (storageLevel.isValid) {
      locations.add(blockManagerId)
    } else {
      locations.remove(blockManagerId)
    }

    // Remove the block from master tracking if it has been removed on all slaves.
    if (locations.size == 0) {
      blockLocations.remove(blockId)
    }
    true
  }

如何实现Torrent?

1. 为了避免Driver的单点问题,在上面的分析中每个executor如果本地不存在数据的时候,通过Driver获取了该BlockId的位置的集合,executor获取到BlockId的地址集合随机化后,优先找同主机的地址(这样可以走回环),然后从随机的地址集合按顺序取地址一个一个尝试去获取数据,因为随机化了地址,那么executor不只会从Driver去获取数据

 /**
   * Return a list of locations for the given block, prioritizing the local machine since
   * multiple block managers can share the same host.
   */
  private def getLocations(blockId: BlockId): Seq[BlockManagerId] = {
    val locs = Random.shuffle(master.getLocations(blockId))
    val (preferredLocs, otherLocs) = locs.partition { loc => blockManagerId.host == loc.host }
    preferredLocs ++ otherLocs
  }

2. BlockID 的随机化

通常数据会被分为多个BlockID,取决于你设置的每个Block的大小

spark.broadcast.blockSize=10M

在获取完整的BlockID块的时候,在Torrent的算法中,随机化了BlockID

for (pid <- Random.shuffle(Seq.range(0, numBlocks))) {
......
}

在任务启动的时候,新启的executor都会同时从driver去获取数据,大家如果都是以相同的Block的顺序,基本上的每个Block数据对executor还是会从Driver去获取, 而BlockID的简单随机化就可以保证每个executor从driver获取到不同的块,当不同的executor在取获取其他块的时候就有机会从其他的executor上获取到,从而分散了对Driver的负载压力。





你可能感兴趣的:(spark,集群,大数据,Broadcast,storage)