webrtc的vad使用GMM(Gaussian Mixture Mode)对语音和噪音建模,通过相应的概率来判断语音和噪声,这种算法的优点是它是无监督的,不需要严格的训练。GMM的噪声和语音模型如下:
p(xk|z,rk)={1/sqrt(2*pi*sita^2)} * exp{ - (xk-uz) ^2/(2 * sita ^2 )}
xk是选取的特征量,在webrtc的VAD中具体是指子带能量,rk是包括均值uz和方差sita的参数集合。z=0,代表噪声,z=1代表语音
webrtc中的vad的c代码的详细步骤如下:
1.设定模式
根据hangover、单独判决和全局判决门限将VAD检测模式分为以下4类
0-quality mode
1-low bitrate mode
2-aggressive mode
3-very aggressive mode
2.webrtc的VAD只支持帧长10ms,20ms和30ms,为此事先要加以判断,不符合条件的返回-1
4.在8KHz采样率上分为两个步骤
4.1 计算子带能量
子带分为80~250Hz,250~500Hz,500~1000Hz,1000~2000Hz,2000~3000Hz,3000~4000Hz
需要分别计算上述子带的能量feature_vector
4.2通过高斯混合模型分别计算语音和非语音的概率,使用假设检验的方法确定信号的类型
首先通过高斯模型计算假设检验中的H0和H1(c代码是用h0_test和h1_test表示),通过门限判决vadflag
然后更新概率计算所需要的语音均值(speech_means)、噪声的均值(noise_means)、语音方差(speech_stds)和噪声方差(noise_stds)
import collections
import contextlib
import sys
import wave
import webrtcvad
def read_wave(path):
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio, sample_rate):
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
class Frame(object):
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames):
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
voiced_frames = []
for frame in frames:
sys.stdout.write(
'1' if vad.is_speech(frame.bytes, sample_rate) else '0')
if not triggered:
ring_buffer.append(frame)
num_voiced = len([f for f in ring_buffer
if vad.is_speech(f.bytes, sample_rate)])
if num_voiced > 0.9 * ring_buffer.maxlen:
sys.stdout.write('+(%s)' % (ring_buffer[0].timestamp,))
triggered = True
voiced_frames.extend(ring_buffer)
ring_buffer.clear()
else:
voiced_frames.append(frame)
ring_buffer.append(frame)
num_unvoiced = len([f for f in ring_buffer
if not vad.is_speech(f.bytes, sample_rate)])
if num_unvoiced > 0.9 * ring_buffer.maxlen:
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b''.join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
if triggered:
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
sys.stdout.write('\n')
if voiced_frames:
yield b''.join([f.bytes for f in voiced_frames])
def main(args):
if len(args) != 2:
sys.stderr.write(
'Usage: example.py <aggressiveness> <path to wav file>\n')
sys.exit(1)
audio, sample_rate = read_wave(args[1])
vad = webrtcvad.Vad(int(args[0]))
frames = frame_generator(30, audio, sample_rate)
frames = list(frames)
segments = vad_collector(sample_rate, 30, 300, vad, frames)
for i, segment in enumerate(segments):
path = 'chunk-%002d.wav' % (i,)
print(' Writing %s' % (path,))
write_wave(path, segment, sample_rate)
if __name__ == '__main__':
main(sys.argv[1:])
参考:
http://blog.csdn.net/u012931018/article/details/16903027
GitHub地址:
https://github.com/wiseman/py-webrtcvad