杭电 ACM 1028 Ignatius and the Princess III

首先,我要对给予大众无私帮助和奉献的作者:Tanky Woo 表示感谢!同时提供他的文章链接:

http://www.wutianqi.com/?p=596

这题是典型的母函数(也叫做生成函数)题,有一定的难度,关键是理解母函数的概念和解法。关于这些我就不多说了,大家只要在百度上搜索就有了。

母函数这题,有很多要注意的地方,像我就是由于小的细节不注意,导致一错再错。比如那个 j 的步进问题,一开始是 j++, 后来是 j = j * 2,再后来是 j *= expr,最后才找到正确答案。

有些注释掉的代码,是我发现错误用的。在草稿上演算了许久,也没找到错误,便借助于观查过程来检查了。

我还把递归的解法也贴上来了,因为递归比较好做,同时理解递归的解题方法也比较有意义。可惜就是超时了。

======================================原题如下======================================

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4144Accepted Submission(s): 2890

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

Sample Input
  
4 10 20

Sample Output
  
5 42 627

Author
Ignatius.L

你可能感兴趣的:(ACM)