转:数据库设计方法、规范与技巧(推荐)

一、数据库设计过程
数据库技术是信息资源管理最有效的手段。数据库设计是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,有效存储数据,满足用户信息要求和处理要求。
数据库设计中需求分析阶段综合各个用户的应用需求(现实世界的需求),在概念设计阶段形成独立于机器特点、独立于各个DBMS产品的概念模式(信息世界模型),用E-R图来描述。在逻辑设计阶段将E-R图转换成具体的数据库产品支持的数据模型如关系模型,形成数据库逻辑模式。然后根据用户处理的要求,安全性的考虑,在基本表的基础上再建立必要的视图(VIEW)形成数据的外模式。在物理设计阶段根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。
1. 需求分析阶段
需求收集和分析,结果得到数据字典描述的数据需求(和数据流图描述的处理需求)。
需求分析的重点是调查、收集与分析用户在数据管理中的信息要求、处理要求、安全性与完整性要求。
需求分析的方法:调查组织机构情况、调查各部门的业务活动情况、协助用户明确对新系统的各种要求、确定新系统的边界。
常用的调查方法有: 跟班作业、开调查会、请专人介绍、询问、设计调查表请用户填写、查阅记录。
分析和表达用户需求的方法主要包括自顶向下和自底向上两类方法。自顶向下的结构化分析方法(Structured Analysis,简称SA方法)从最上层的系统组织机构入手,采用逐层分解的方式分析系统,并把每一层用数据流图和数据字典描述。
数据流图表达了数据和处理过程的关系。系统中的数据则借助数据字典(Data Dictionary,简称DD)来描述。
数据字典是各类数据描述的集合,它是关于数据库中数据的描述,即元数据,而不是数据本身。数据字典通常包括数据项、数据结构、数据流、数据存储和处理过程五个部分(至少应该包含每个字段的数据类型和在每个表内的主外键)。
数据项描述={数据项名,数据项含义说明,别名,数据类型,长度,
         取值范围,取值含义,与其他数据项的逻辑关系}
数据结构描述={数据结构名,含义说明,组成:{数据项或数据结构}}
数据流描述={数据流名,说明,数据流来源,数据流去向,
         组成:{数据结构},平均流量,高峰期流量}
数据存储描述={数据存储名,说明,编号,流入的数据流,流出的数据流,   
        组成:{数据结构},数据量,存取方式}
处理过程描述={处理过程名,说明,输入:{数据流},输出:{数据流},
          处理:{简要说明}}
2. 概念结构设计阶段
通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型,可以用E-R图表示。
概念模型用于信息世界的建模。概念模型不依赖于某一个DBMS支持的数据模型。概念模型可以转换为计算机上某一DBMS支持的特定数据模型。
概念模型特点:
(1) 具有较强的语义表达能力,能够方便、直接地表达应用中的各种语义知识。
(2) 应该简单、清晰、易于用户理解,是用户与数据库设计人员之间进行交流的语言。
概念模型设计的一种常用方法为IDEF1X方法,它就是把实体-联系方法应用到语义数据模型中的一种语义模型化技术,用于建立系统信息模型。
使用IDEF1X方法创建E-R模型的步骤如下所示:
2.1 第零步——初始化工程
这个阶段的任务是从目的描述和范围描述开始,确定建模目标,开发建模计划,组织建模队伍,收集源材料,制定约束和规范。收集源材料是这阶段的重点。通过调查和观察结果,业务流程,原有系统的输入输出,各种报表,收集原始数据,形成了基本数据资料表。
2.2 第一步——定义实体
实体集成员都有一个共同的特征和属性集,可以从收集的源材料——基本数据资料表中直接或间接标识出大部分实体。根据源材料名字表中表示物的术语以及具有“代码”结尾的术语,如客户代码、代理商代码、产品代码等将其名词部分代表的实体标识出来,从而初步找出潜在的实体,形成初步实体表。
2.3 第二步——定义联系
IDEF1X模型中只允许二元联系,n元联系必须定义为n个二元联系。根据实际的业务需求和规则,使用实体联系矩阵来标识实体间的二元关系,然后根据实际情况确定出连接关系的势、关系名和说明,确定关系类型,是标识关系、非标识关系(强制的或可选的)还是非确定关系、分类关系。如果子实体的每个实例都需要通过和父实体的关系来标识,则为标识关系,否则为非标识关系。非标识关系中,如果每个子实体的实例都与而且只与一个父实体关联,则为强制的,否则为非强制的。如果父实体与子实体代表的是同一现实对象,那么它们为分类关系。
2.4 第三步——定义码
通过引入交叉实体除去上一阶段产生的非确定关系,然后从非交叉实体和独立实体开始标识侯选码属性,以便唯一识别每个实体的实例,再从侯选码中确定主码。为了确定主码和关系的有效性,通过非空规则和非多值规则来保证,即一个实体实例的一个属性不能是空值,也不能在同一个时刻有一个以上的值。找出误认的确定关系,将实体进一步分解,最后构造出IDEF1X模型的键基视图(KB图)。
2.5 第四步——定义属性
从源数据表中抽取说明性的名词开发出属性表,确定属性的所有者。定义非主码属性,检查属性的非空及非多值规则。此外,还要检查完全依赖函数规则和非传递依赖规则,保证一个非主码属性必须依赖于主码、整个主码、仅仅是主码。以此得到了至少符合关系理论第三范式的改进的IDEF1X模型的全属性视图。
2.6 第五步——定义其他对象和规则
定义属性的数据类型、长度、精度、非空、缺省值、约束规则等。定义触发器、存储过程、视图、角色、同义词、序列等对象信息。
3. 逻辑结构设计阶段
将概念结构转换为某个DBMS所支持的数据模型(例如关系模型),并对其进行优化。设计逻辑结构应该选择最适于描述与表达相应概念结构的数据模型,然后选择最合适的DBMS。
将E-R图转换为关系模型实际上就是要将实体、实体的属性和实体之间的联系转化为关系模式,这种转换一般遵循如下原则:
1)一个实体型转换为一个关系模式。实体的属性就是关系的属性。实体的码就是关系的码。
2)一个m:n联系转换为一个关系模式。与该联系相连的各实体的码以及联系本身的属性均转换为关系的属性。而关系的码为各实体码的组合。
3)一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。如果转换为一个独立的关系模式,则与该联系相连的各实体的码以及联系本身的属性均转换为关系的属性,而关系的码为n端实体的码。
4)一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。
5)三个或三个以上实体间的一个多元联系转换为一个关系模式。与该多元联系相连的各实体的码以及联系本身的属性均转换为关系的属性。而关系的码为各实体码的组合。
6)同一实体集的实体间的联系,即自联系,也可按上述1:1、1:n和m:n三种情况分别处理。
7)具有相同码的关系模式可合并。
为了进一步提高数据库应用系统的性能,通常以规范化理论为指导,还应该适当地修改、调整数据模型的结构,这就是数据模型的优化。确定数据依赖。消除冗余的联系。确定各关系模式分别属于第几范式。确定是否要对它们进行合并或分解。一般来说将关系分解为3NF的标准,即:
表内的每一个值都只能被表达一次。

你可能感兴趣的:(设计模式,数据结构,活动)