内核进程的复制

在通过fork系统调用创建进程时,最终会进入内核的do_fork函数,这个函数的大部分工作都是进程的复制,就是把大部分工作都委托给函数copy_process函数来完成。本博文主要讨论进程的复制工作。

下面分成几个段,所在代码包含了整个copy_process函数

一,标志检查

static struct task_struct *copy_process(unsigned long clone_flags,
					unsigned long stack_start,
					struct pt_regs *regs,
					unsigned long stack_size,
					int __user *child_tidptr,
					struct pid *pid)
{
	int retval;
	struct task_struct *p;
	int cgroup_callbacks_done = 0;

	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
		return ERR_PTR(-EINVAL);

	/*
	 * Thread groups must share signals as well, and detached threads
	 * can only be started up within the thread group.
	 */
	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
		return ERR_PTR(-EINVAL);

	/*
	 * Shared signal handlers imply shared VM. By way of the above,
	 * thread groups also imply shared VM. Blocking this case allows
	 * for various simplifications in other code.
	 */
	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
		return ERR_PTR(-EINVAL);

	retval = security_task_create(clone_flags);
	if (retval)
		goto fork_out;
这是函数的开始部分,先进行传入的参数检查,主要是:

  1. 如果创建进程的时候,要求创建一个新的命名空间(CLONE_NEWNS),并且同时要求与父进程共享所有的文件系统信息(CLONE_FS),这是不允许的。此时是要求共享其文件系统。
  2. 在用CLONE_THREAD标志时,必须使用CLONE_SIGHAND标志,后者表示共享相同的信号处理表。
  3. 在使用CLONE_SIGHAND标志时,必须使用CLONE_VM标志,后者表示子进程和你进程共享虚拟地址空间,也只有这个时候,才能提供共享的信号处理程序。
二,建立副本

	retval = -ENOMEM;
	p = dup_task_struct(current);
	if (!p)
		goto fork_out;
dup_task_struct用来建立父进程的副本,函数如下:

static struct task_struct *dup_task_struct(struct task_struct *orig)
{
	struct task_struct *tsk;
	struct thread_info *ti;
	int err;

	prepare_to_copy(orig);

	tsk = alloc_task_struct();
	if (!tsk)
		return NULL;

	ti = alloc_thread_info(tsk);
	if (!ti) {
		free_task_struct(tsk);
		return NULL;
	}

	*tsk = *orig;//将父进程的内容填充新的进程
	tsk->stack = ti;

	err = prop_local_init_single(&tsk->dirties);
	if (err) {
		free_thread_info(ti);
		free_task_struct(tsk);
		return NULL;
	}

	setup_thread_stack(tsk, orig);

#ifdef CONFIG_CC_STACKPROTECTOR
	tsk->stack_canary = get_random_int();
#endif

	/* One for us, one for whoever does the "release_task()" (usually parent) */
	atomic_set(&tsk->usage,2);//使用计数器置为2,表示当前进程描述符处于活动状态。
	atomic_set(&tsk->fs_excl, 0);
#ifdef CONFIG_BLK_DEV_IO_TRACE
	tsk->btrace_seq = 0;
#endif
	tsk->splice_pipe = NULL;
	return tsk;
}
  1. 调用alloc_task_struct为新进程分配进程结构,返回tsk指针。
  2. 为新的进程分配一个核心态栈,也就是tsk->stack。栈和thread_info一同保存在一个联合结构中。thread_info用于保存进程所需的特定于处理器的底层信息,定义如下:
    struct thread_info {
    	struct task_struct	*task;		/* 不前的主进程 */
    	unsigned long		flags;
    	struct exec_domain	*exec_domain;	/* 执行区间 */
    	int			preempt_count;	/* 内核抢占所需的一个计数器*/
    	__u32 cpu; /* 进程正在其上执行的CPU数目 */
    	struct restart_block    restart_block;//用于实现信号机制
    };

    而进程的栈和thread_info的联合体定义如下:
    union thread_union {
    	struct thread_info thread_info;
    	unsigned long stack[THREAD_SIZE/sizeof(long)];
    };
    在分配了栈后,调用setup_thread_stack确定栈内的布局。这个函数完成的操作是:把父进程的thread_info(进程描述结构)值复制给tsk的进程描述结构。然后将tsk的进程描述符中的task域改为tsk。
    #define task_thread_info(task)	((struct thread_info *)(task)->stack)
    
    static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
    {
    	*task_thread_info(p) = *task_thread_info(org);
    	task_thread_info(p)->task = p;
    }
    在执行完setup_thread_stack之后,父子进程除了stack的指针之外是完全一样的。
三,检查进程数创建限制
	rt_mutex_init_task(p);//互斥锁初始化

#ifdef CONFIG_TRACE_IRQFLAGS
	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
	retval = -EAGAIN;
	if (atomic_read(&p->user->processes) >=
			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
		    p->user != current->nsproxy->user_ns->root_user)
			goto bad_fork_free;
	}
	atomic_inc(&p->user->__count);
	atomic_inc(&p->user->processes);
	get_group_info(p->group_info);增加组的使用计数
进程结构task_struct中有一个域,名为:user_struct,这个域保存了当前用户的使用资源计数。
struct task_struct{
......
     struct user_struct *user;
......
};
在user_struct结构中包含processes表示当前的用户能够创建最多的进程数。如果超过限制,就放弃创建进程。root用户除外。如果没有超过限制,就将user_struct结构的引用计数加1,并将已经创建的进程数加1。
四,线程检查
检查线程创建是否超过最大限制,这个比较简单
	/*
	 * If multiple threads are within copy_process(), then this check
	 * triggers too late. This doesn't hurt, the check is only there
	 * to stop root fork bombs.
	 */
	if (nr_threads >= max_threads)
		goto bad_fork_cleanup_count;
五,写入数据
在这里,进程描述符task_struct已经建立好了,其和父进程是一样的,除了栈地址不一样之外,现在开始修改一些值。
	if (!try_module_get(task_thread_info(p)->exec_domain->module))
		goto bad_fork_cleanup_count;

	if (p->binfmt && !try_module_get(p->binfmt->module))
		goto bad_fork_cleanup_put_domain;

	p->did_exec = 0;当前还有加载任何执行的系统调用,所以为0以标识
	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
	copy_flags(clone_flags, p);
	INIT_LIST_HEAD(&p->children);
	INIT_LIST_HEAD(&p->sibling);
	p->vfork_done = NULL;
	spin_lock_init(&p->alloc_lock);

	clear_tsk_thread_flag(p, TIF_SIGPENDING);
	init_sigpending(&p->pending);

	p->utime = cputime_zero;
	p->stime = cputime_zero;
	p->gtime = cputime_zero;
	p->utimescaled = cputime_zero;
	p->stimescaled = cputime_zero;
	p->prev_utime = cputime_zero;
	p->prev_stime = cputime_zero;

#ifdef CONFIG_TASK_XACCT
	p->rchar = 0;		/* I/O counter: bytes read */
	p->wchar = 0;		/* I/O counter: bytes written */
	p->syscr = 0;		/* I/O counter: read syscalls */
	p->syscw = 0;		/* I/O counter: write syscalls */
#endif
	task_io_accounting_init(p);
	acct_clear_integrals(p);

	p->it_virt_expires = cputime_zero;
	p->it_prof_expires = cputime_zero;
	p->it_sched_expires = 0;
	INIT_LIST_HEAD(&p->cpu_timers[0]);
	INIT_LIST_HEAD(&p->cpu_timers[1]);
	INIT_LIST_HEAD(&p->cpu_timers[2]);

	p->lock_depth = -1;		/* -1 = no lock */
	do_posix_clock_monotonic_gettime(&p->start_time);
	p->real_start_time = p->start_time;
	monotonic_to_bootbased(&p->real_start_time);
#ifdef CONFIG_SECURITY
	p->security = NULL;
#endif
	p->io_context = NULL;
	p->audit_context = NULL;
	cgroup_fork(p);
#ifdef CONFIG_NUMA
 	p->mempolicy = mpol_copy(p->mempolicy);
 	if (IS_ERR(p->mempolicy)) {
 		retval = PTR_ERR(p->mempolicy);
 		p->mempolicy = NULL;
 		goto bad_fork_cleanup_cgroup;
 	}
	mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	p->irq_events = 0;
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	p->hardirqs_enabled = 1;
#else
	p->hardirqs_enabled = 0;
#endif
	p->hardirq_enable_ip = 0;
	p->hardirq_enable_event = 0;
	p->hardirq_disable_ip = _THIS_IP_;
	p->hardirq_disable_event = 0;
	p->softirqs_enabled = 1;
	p->softirq_enable_ip = _THIS_IP_;
	p->softirq_enable_event = 0;
	p->softirq_disable_ip = 0;
	p->softirq_disable_event = 0;
	p->hardirq_context = 0;
	p->softirq_context = 0;
#endif
#ifdef CONFIG_LOCKDEP
	p->lockdep_depth = 0; /* no locks held yet */
	p->curr_chain_key = 0;
	p->lockdep_recursion = 0;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
	p->blocked_on = NULL; /* not blocked yet */
#endif
这里是对一些值进行初始化,和各种策略相关的值,如调度等等,有些值是很重要的。
六,加入调度
	/* Perform scheduler related setup. Assign this task to a CPU. */
	sched_fork(p, clone_flags);
这可以使用是进程可以参加调度,但此时进程的状态改为正在TASK_RUNNING,这以防止内核的其他部分将其改为可运行状态,因为我们对进程的设置还没有完成,这样调度进程会有问题。

七,开始复制
	if ((retval = security_task_alloc(p)))
		goto bad_fork_cleanup_policy;
	if ((retval = audit_alloc(p)))
		goto bad_fork_cleanup_security;
	/* copy all the process information */
	if ((retval = copy_semundo(clone_flags, p)))System V信号量
		goto bad_fork_cleanup_audit;
	if ((retval = copy_files(clone_flags, p)))文件描述符
		goto bad_fork_cleanup_semundo;
	if ((retval = copy_fs(clone_flags, p)))文件系统上下文 
		goto bad_fork_cleanup_files;
	if ((retval = copy_sighand(clone_flags, p)))进程信息处理程序
		goto bad_fork_cleanup_fs;
	if ((retval = copy_signal(clone_flags, p)))
		goto bad_fork_cleanup_sighand;
	if ((retval = copy_mm(clone_flags, p)))地址空间
		goto bad_fork_cleanup_signal;
	if ((retval = copy_keys(clone_flags, p)))
		goto bad_fork_cleanup_mm;
	if ((retval = copy_namespaces(clone_flags, p)))
		goto bad_fork_cleanup_keys;
	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
	if (retval)
		goto bad_fork_cleanup_namespaces;
这里有各种Copy。

八,分配PID等操作
	if (pid != &init_struct_pid) {
		retval = -ENOMEM;
		pid = alloc_pid(task_active_pid_ns(p));
		if (!pid)
			goto bad_fork_cleanup_namespaces;

		if (clone_flags & CLONE_NEWPID) {
			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
			if (retval < 0)
				goto bad_fork_free_pid;
		}
	}

	p->pid = pid_nr(pid);
	p->tgid = p->pid;
	if (clone_flags & CLONE_THREAD)
		p->tgid = current->tgid;

	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
	/*
	 * Clear TID on mm_release()?
	 */
	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
#ifdef CONFIG_FUTEX
	p->robust_list = NULL;
#ifdef CONFIG_COMPAT
	p->compat_robust_list = NULL;
#endif
	INIT_LIST_HEAD(&p->pi_state_list);
	p->pi_state_cache = NULL;
#endif
	/*
	 * sigaltstack should be cleared when sharing the same VM
	 */
	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
		p->sas_ss_sp = p->sas_ss_size = 0;

	/*
	 * Syscall tracing should be turned off in the child regardless
	 * of CLONE_PTRACE.
	 */
	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif

	/* Our parent execution domain becomes current domain
	   These must match for thread signalling to apply */
	p->parent_exec_id = p->self_exec_id;

	/* ok, now we should be set up.. */
	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
	p->pdeath_signal = 0;
	p->exit_state = 0;

	/*
	 * Ok, make it visible to the rest of the system.
	 * We dont wake it up yet.
	 */
	p->group_leader = p;
	INIT_LIST_HEAD(&p->thread_group);
	INIT_LIST_HEAD(&p->ptrace_children);
	INIT_LIST_HEAD(&p->ptrace_list);

	/* Now that the task is set up, run cgroup callbacks if
	 * necessary. We need to run them before the task is visible
	 * on the tasklist. */
	cgroup_fork_callbacks(p);
	cgroup_callbacks_done = 1;

	/* Need tasklist lock for parent etc handling! */
	write_lock_irq(&tasklist_lock);

	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
	p->ioprio = current->ioprio;

	/*
	 * The task hasn't been attached yet, so its cpus_allowed mask will
	 * not be changed, nor will its assigned CPU.
	 *
	 * The cpus_allowed mask of the parent may have changed after it was
	 * copied first time - so re-copy it here, then check the child's CPU
	 * to ensure it is on a valid CPU (and if not, just force it back to
	 * parent's CPU). This avoids alot of nasty races.
	 */
	p->cpus_allowed = current->cpus_allowed;
	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
			!cpu_online(task_cpu(p))))
		set_task_cpu(p, smp_processor_id());
九,初始化父子关系
	/* CLONE_PARENT re-uses the old parent */
	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
		p->real_parent = current->real_parent;
	else
		p->real_parent = current;
	p->parent = p->real_parent;

	spin_lock(&current->sighand->siglock);

	/*
	 * Process group and session signals need to be delivered to just the
	 * parent before the fork or both the parent and the child after the
	 * fork. Restart if a signal comes in before we add the new process to
	 * it's process group.
	 * A fatal signal pending means that current will exit, so the new
	 * thread can't slip out of an OOM kill (or normal SIGKILL).
 	 */
	recalc_sigpending();
	if (signal_pending(current)) {
		spin_unlock(¤t->sighand->siglock);
		write_unlock_irq(&tasklist_lock);
		retval = -ERESTARTNOINTR;
		goto bad_fork_free_pid;
	}

如果创建的是线程或者是PARENT选项,则其父进程为current的父进程。

十,线程创建部分
如果本次创建的是线程,一些另于进程创建的操作。
	if (clone_flags & CLONE_THREAD) {
		p->group_leader = current->group_leader;//线程组长就是当前线程的组长
		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);

		if (!cputime_eq(current->signal->it_virt_expires,
				cputime_zero) ||
		    !cputime_eq(current->signal->it_prof_expires,
				cputime_zero) ||
		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
		    !list_empty(&current->signal->cpu_timers[0]) ||
		    !list_empty(&current->signal->cpu_timers[1]) ||
		    !list_empty(&current->signal->cpu_timers[2])) {
			/*
			 * Have child wake up on its first tick to check
			 * for process CPU timers.
			 */
			p->it_prof_expires = jiffies_to_cputime(1);
		}
	}

十一,新进程插入进程链表
	if (likely(p->pid)) {
		add_parent(p);
		if (unlikely(p->ptrace & PT_PTRACED))
			__ptrace_link(p, current->parent);

		if (thread_group_leader(p)) {
			if (clone_flags & CLONE_NEWPID)
				p->nsproxy->pid_ns->child_reaper = p;如果创建新的命名空间,则将命名空间的child_reaper设为当前创建的进程,这个进程就是这个创建的命名空间的init进程。

			p->signal->tty = current->signal->tty;
			set_task_pgrp(p, task_pgrp_nr(current));
			set_task_session(p, task_session_nr(current));
			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
			attach_pid(p, PIDTYPE_SID, task_session(current));
			list_add_tail_rcu(&p->tasks, &init_task.tasks);
			__get_cpu_var(process_counts)++;
		}
		attach_pid(p, PIDTYPE_PID, pid);
		nr_threads++;
	}
add_parent宏将进程的children链表与父进程连接,实现如下
#define add_parent(p)		list_add_tail(&(p)->sibling,&(p)->parent->children)
十二,最后
	total_forks++;
	spin_unlock(&current->sighand->siglock);
	write_unlock_irq(&tasklist_lock);
	proc_fork_connector(p);
	cgroup_post_fork(p);
	return p;

bad_fork_free_pid:
	if (pid != &init_struct_pid)
		free_pid(pid);
bad_fork_cleanup_namespaces:
	exit_task_namespaces(p);
bad_fork_cleanup_keys:
	exit_keys(p);
bad_fork_cleanup_mm:
	if (p->mm)
		mmput(p->mm);
bad_fork_cleanup_signal:
	cleanup_signal(p);
bad_fork_cleanup_sighand:
	__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
	exit_fs(p); /* blocking */
bad_fork_cleanup_files:
	exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
	exit_sem(p);
bad_fork_cleanup_audit:
	audit_free(p);
bad_fork_cleanup_security:
	security_task_free(p);
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
	mpol_free(p->mempolicy);
bad_fork_cleanup_cgroup:
#endif
	cgroup_exit(p, cgroup_callbacks_done);
	delayacct_tsk_free(p);
	if (p->binfmt)
		module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
	module_put(task_thread_info(p)->exec_domain->module);
bad_fork_cleanup_count:
	put_group_info(p->group_info);
	atomic_dec(&p->user->processes);
	free_uid(p->user);
bad_fork_free:
	free_task(p);
fork_out:
	return ERR_PTR(retval);
}

你可能感兴趣的:(进程)