E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习知识总结
米贸搜|Meta广告中级水准:Facebook自动完成四项广告设置,改善投放成效!
广告投放中的
机器学习
预算自动分配版位自动分配受众自动分配创意灵活调整一、广告投放中的
机器学习
机器学习
现已成为数字营销的基础,能够帮助我们面向想要触达的受众投放与之相关的广告。
mimaosoulily
·
2024-01-26 17:31
facebook
学习笔记-李沐动手学深度学习(一)(01-07,概述、数据操作、tensor操作、数学基础、自动求导(前向计算、反向传播))
github.com/d2l-ai多体会【梯度指向的是值变化最大的方向】符号维度(弹幕说)2,3,4越后面维度越低4就是一维有4个标量00-预告01-课程安排02-深度学习介绍【语言是一个符号】【深度学习是
机器学习
的一种
kgbkqLjm
·
2024-01-26 17:28
李沐动手学深度学习
学习
笔记
深度学习
机器学习
——随机森林原理及Python实现
目录一、理论1.随机森林介绍1.1随机森林中“树”的生成2、RandomForest优缺点2.1.优点2.2.缺点3.随机森林分类效果(错误率)的影响因素:4袋外错误率(ooberror)二、实战1.代码实现流程:2.库3.类3.1参数:4.代码一、理论1.随机森林介绍从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集
qq_27758151
·
2024-01-26 17:17
机器学习
python
机器学习
python
随机森林
数字孪生系统的第三方算法库
1.TensorFlow:TensorFlow是一个开源的
机器学习
框架,提供了各种工具和库,用于构建和训练深度学习模型。它可以在数字孪生系统中用于实现
机器学习
和神经网络
super_Dev_OP
·
2024-01-26 17:15
算法
信息可视化
第2章 信息技术发展——2.3 新一代信息技术及应用(下)
文章目录2.3新一代信息技术及应用(下)2.3.1区块链1.技术基础2.关键技术1)分布式账本2)加密算法3)共识机制3.应用和发展2.3.2人工智能1.技术基础2.关键技术1)
机器学习
2)自然语言处理
Mrlibai
·
2024-01-26 17:14
信息系统项目管理
区块链
人工智能
虚拟现实
笔记
学习
模型推理加速系列 | 08:TensorRT-LLM助力LLM高性能推理
CreatedbyDALL·E3小伙伴们好,我是《小窗幽记
机器学习
》的小编:卖汤圆的小女孩,今天是冬至,祝福小伙伴们幸福安康吧。
JasonLiu1919
·
2024-01-26 16:24
人工智能
推理加速
LLM
chatgpt
LLM
人工智能
推理加速
TensorFlow Lite中文本分类在Android上的实践
#1TensorflowLiteTensorFlowLite(后续简称TFL)是Google开发的一个用于移动设备和嵌入式设备的开源库,旨在为移动终端设备提供
机器学习
推断。
GodLieke
·
2024-01-26 16:19
Security
机器学习
恶意文本识别
tensorflow
android
人工智能
骚扰拦截
Maya---基础
知识总结
W移动工具E旋转工具R尺寸工具World/ObjectAlt+鼠标左键旋转Alt+鼠标右键缩放Alt+鼠标中键平移X,z为地面创建---多边形基本体(Ctrl+shift+鼠标左键)移动到快捷栏,鼠标中键移动位置Ctrl/shift+h隐藏/显示物体Ctrl+d复制Shift+d多次相同复制F聚焦视角Shift+点/线选中一行的点或线Shift+右键--->删除边合并顶点两个物体时,按住shift
renwen1579
·
2024-01-26 15:44
maya
maya
深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
知乎上的:
机器学习
与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
搬砖班班长
·
2024-01-26 15:41
深度学习
人工智能
学习
经验分享
R
机器学习
mlr3:超参数调优
很多人戏称调参的过程就像是"炼丹"!确实差不多,而且很多时候你调整后的结果可能还不如默认的结果好!这就好比打游戏,"一顿操作猛如虎,一看战绩0比5"!模型调优一定要基于对算法和数据的理解进行,不是随便调的。我们使用著名的糖尿病数据集进行演示,首先创建任务library(mlr3verse)##载入需要的程辑包:mlr3task(768x9)##*Target:diabetes##*Properti
医学和生信笔记
·
2024-01-26 15:28
Statistics with Python
知识总结
:库、统计图
前言统计学作为一门重要的数据分析领域,为我们理解和解释数据提供了有力的工具。而Python是用来进行统计自动化和画图的重要工具。本文总结了与统计学相关的Python数据库和不同类型的统计图的关键知识点,帮助读者更好地理解工具,以及各知识点之间的逻辑,以便未来利用这些工具进行数据分析和可视化。目录前言库PandasDataFrame的数据结构ScriptMatPlotLib(画图)Seaborn散点
Ashleyxxihf
·
2024-01-26 14:24
Python与统计
python
概率论
机器学习
数据库系统
什么是多视角回归?
多视角回归(Multi-viewRegression)是一种
机器学习
方法,它处理具有多个数据源或视角的问题。在多视角回归中,每个视角提供了关于样本的不同信息。这种方法旨在综合这些信息以提高建模的性能。
CA&AI-drugdesign
·
2024-01-26 13:28
GPT4
回归
数据挖掘
人工智能
Optional lab: Linear Regression using Scikit-LearnⅠ
scikit-learn是一个开源的、可用于商业的
机器学习
工具包,此工具包包含本课程中需要使用的许多算法的实现GoalsInthislabyouwillutilizescikit-learntoimplementlinearregressionusingGradientDescentToolsYouwillutilizefunctionsfromscikit-learnaswellasmatplo
gravity_w
·
2024-01-26 12:25
机器学习
线性回归
scikit-learn
算法
python
机器学习
笔记
回归
Optional lab: Linear Regression using Scikit-LearnⅡ
scikit-learn是一个开源的、可用于商业的
机器学习
工具包,此工具包包含本课程中需要使用的许多算法的实现GoalsInthislabyouwillutilizescikit-learntoimplementlinearregressionusingacloseformsolutionbasedonthenormalequationToolsYouwillutilizefunctionsfro
gravity_w
·
2024-01-26 12:25
机器学习
线性回归
scikit-learn
算法
机器学习
笔记
python
经验分享
Android P 的自适应电池和自适应亮度
默认情况下,两个都在PUI上,可以很容易地被禁用(设置=>电池=>自适应电池和设置=显示=自适应亮度),并在后台自动工作-
机器学习
处理所有的重举。
岸边的杂草
·
2024-01-26 12:17
可解释性AI (Explainable Artificial Intelligence,XAI)
传统的
机器学习
算法(如决策树、逻辑回归等)通常可以提供一定程度的解释性,因为它们的决策过程相对简单和
csdn_aspnet
·
2024-01-26 11:35
人工智能
机器学习
的精髓-梯度下降算法
目1.梯度下降算法2.梯度下降求解3.总结1.梯度下降算法梯度下降算法是一种优化算法,用于最小化函数的数值方法。它通过沿着函数梯度的反方向来更新参数,以逐步减小函数值。这一过程重复进行直到达到收敛条件。梯度下降算法有多种变体,包括批量梯度下降、随机梯度下降和小批量梯度下降。这些变体在处理大规模数据和优化不同类型的函数时具有不同的优势。2.梯度下降求解下面用一个例子来说明,使用梯度下降求极值的过程。
wyw0000
·
2024-01-26 11:13
机器学习
机器学习
算法
人工智能
机器学习
、深度学习、自然语言处理基础
知识总结
说明
机器学习
、深度学习、自然语言处理基础
知识总结
。目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。
北航程序员小C
·
2024-01-26 10:43
机器学习专栏
人工智能学习专栏
深度学习专栏
机器学习
深度学习
自然语言处理
机器学习
算法(一)
一、线性回归线性回归(LinearRegression)可能是最流行的
机器学习
算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。
几两春秋梦_
·
2024-01-26 10:40
机器学习常识
机器学习
算法
人工智能
交叉熵损失函数(Cross-Entropy Loss Function)
交叉熵损失函数(Cross-EntropyLossFunction)在处理
机器学习
或深度学习问题时,损失/成本函数用于在训练期间优化模型。目标几乎总是最小化损失函数。损失越低,模型越好。
或许,这就是梦想吧!
·
2024-01-26 10:54
人工智能
深度学习
DeFi和FinTech有什么不同?
FinTech(金融科技)主要是通过
机器学习
(MachineLearning)和人工智能(ArtificialIntelligence),去做更好的预测和判断。FinTech的核心是信用。
MoonDEX_
·
2024-01-26 10:01
第十届脑电
机器学习
训练营(线上:2023.8.14~9.3)
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★随着人们对神经系统功能认识的提高和计算机技术的发展,脑机接口(BCI)技术的研究呈明显的上升趋势。BCI是一种不依赖
茗创科技
·
2024-01-26 08:22
MWORKS.Syslab 如何统一 Julia、C/C++、Python 乃至 MATLAB —— 解密多语言统一的底层机制
年轻理科生们的口中逐渐出现了诸如“调参侠”“调包小子”“炼丹师”等新潮的调侃词语,这些来自
机器学习
/深度学习领域的“梗”在社交网络中逐渐扩散,让人们不禁感叹科学计算已经成为了炙手可热的“显学”。
同元软控
·
2024-01-26 07:57
julia
同元软控
MWORKS
工业软件
python
c语言
c++
机器学习
没那么难,Azure AutoML帮你简单3步实现自动化模型训练
AutoML是AzureDatabricks的一项功能,它自动的对数据进行清理和特征工程并使用数据尝试多种算法和参数来训练最佳
机器学习
模型。
AI普惠大师
·
2024-01-26 07:55
云计算
azure
microsoft
机器学习
自动化
人工智能
机器学习
模型性能的常用的评估指标总结1-12
评估指标的总结
机器学习
模型评价的指标有很多,本文给出了其中一些主要的指标:准确率(Accuracy):正确预测的样本数占总样本数的比例。https://editor.csdn.net/md/?
Algorithm_Engineer_
·
2024-01-26 07:24
机器学习
机器学习
人工智能
[Python]
机器学习
- 常用数据集(Dataset)之鸢尾花(Iris)数据集介绍,数据可视化和使用案例
鸢(yuān)尾花(Iris)数据集介绍鸢【音:yuān】尾花(Iris)是单子叶百合目花卉,是一种比较常见的花,而且鸢尾花的品种较多,在某个公园里你可能不经意间就能碰见它。鸢尾花数据集最初由EdgarAnderson测量得到,而后在著名的统计学家和生物学家R.AFisher于1936年发表的文章「Theuseofmultiplemeasurementsintaxonomicproblems」中被
老狼IT工作室
·
2024-01-26 06:11
python
信息可视化
python
Iris数据集
[Python]
机器学习
- 常用数据集(Dataset)之糖尿病(diabetes)数据集介绍,数据可视化和使用案例
糖尿病(diabetes)数据集介绍diabetes是一个关于糖尿病的数据集,该数据集包括442个病人的生理数据及一年以后的病情发展情况。该数据集共442条信息,特征值总共10项,如下:age:年龄sex:性别bmi(bodymassindex):身体质量指数,是衡量是否肥胖和标准体重的重要指标,理想BMI(18.5~23.9)=体重(单位Kg)÷身高的平方(单位m)bp(bloodpressur
老狼IT工作室
·
2024-01-26 06:11
python
python
scikit-learn
糖尿病数据集
机器学习
系统的设计(Machine Learning System Design)
1.首先要做的内容本章以一个垃圾邮件分类器算法为例进行讨论。为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量。我们可以选择一个由100个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为1,不出现为0),尺寸为100×1。为了构建这个分类器算法,我们可以做很多事,例如:收集更多的数据,让我们有更多的垃圾邮件和非垃圾邮件的样本基于邮件的路
清☆茶
·
2024-01-26 06:10
机器学习
人工智能
数据挖掘
第二章 多变量线性回归
在
机器学习
中,多维特征通常用于训练模型进行分类、回归或聚类等任务。在处理多维特征时,需要注意一些问题。首先,有些特征之间可能存在相关性,这会导致模型过拟合。
清☆茶
·
2024-01-26 06:09
线性回归
算法
回归
人工智能
【
机器学习
300问】18、正则化是如何解决过拟合问题的?
当我初次看见“正则化”三个字的时候,我简直头疼。在我的理解里“正则”还是Python中用在字符串处理的re正则库呢!怎么加一个“化”字就看不懂了!听我给你慢慢道来。一、正则化中的“正则”是个啥玩意儿?正则化(Regularization)中的“正则”这个词来源于英文术语“regularization”,直译成中文即“规范化”或“正规化”。这里的“正则”并不是指严格意义上的“规则”或“规律”,而是指
小oo呆
·
2024-01-26 06:08
【机器学习】
机器学习
人工智能
支持向量机(Support Vector Machines, SVM)
本文转载自:https://github.com/apachecn/MachineLearning支持向量机概述支持向量机(SupportVectorMachines,SVM):是一种
机器学习
算法。
Zziven
·
2024-01-26 06:02
机器学习
支持向量机
第四篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:
机器学习
传奇开心短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文短博文目录一、项目目标二、OpenCV
机器学习
介绍三、OpenCV支持向量机示例代码四、OpenCV支持向量机示例代码扩展五
传奇开心果编程
·
2024-01-26 06:02
Python库OpenCV
技术点案例示例短博文
opencv
机器学习
python
机器学习
——Support Vector Machines支持向量机模型
学习目标:1·了解什么是SupportVectorMachines;Introduction:首先明确,支持向量机模型是解决分类问题的非常好的一个工具。为了方便理解,我们给出如下实例:在上图中有两组不同的散点,如果我们要去判断某一个点属于粉色还是蓝色,我们的判断依据是什么?首先可以想到,通过分割平面的方法把平面分成两部分,这些点落在哪一个平面就属于哪一类。那么问题又来了,我们如何去确定这一条线呢?
Alphoseven
·
2024-01-26 06:57
大数据
支持向量机
机器学习
机器学习
:多元线性回归闭式解(Python)
importnumpyasnpimportmatplotlib.pyplotaspltclassLRClosedFormSol:def__init__(self,fit_intercept=True,normalize=True):""":paramfit_intercept:是否训练bias:paramnormalize:是否标准化数据"""self.theta=None#训练权重系数self.
捕捉一只Diu
·
2024-01-26 06:26
python
机器学习
线性回归
机器学习
_常见算法比较模型效果(LR、KNN、SVM、NB、DT、RF、XGB、LGB、CAT)
在KNN和其他
机器学习
算法中,常用的距离计算公式包括欧氏距离和曼哈顿距离。两个向量之间,用不同的距离计算公式得出来的结果是不一样的。欧氏距
you_are_my_sunshine*
·
2024-01-26 06:25
机器学习
机器学习
算法
人工智能
前出深入-
机器学习
文章目录一、K近邻算法1.1先画一个散列图1.2使用K最近算法建模拟合数据1.3进行预测1.4K最近邻算法处理多元分类问题1.5K最近邻算法用于回归分析1.6K最近邻算法项目实战-酒的分类1.6.1对数据进行分析1.6.2生成训练数据集和测试数据集1.6.3使用K最近邻算法对数据进行建模预测1.6.4对新数据进行分类二、广义线性模型2.1线性模型的一般公式2.2通过数据集绘制2.2.1查看系数和截
代码浪人
·
2024-01-26 05:21
机器学习
机器学习
python
人工智能
AI数字人的出现为创作带来无限可能,数字化时代的文学与艺术迎来变革
人工智能技术正以极快的速度改变着人们的生活和工作方式,其应用不仅局限于数据分析、
机器学习
等领域,而最近的一项突破则引起了全球的广泛关注——AI数字人。
广州硅基技术官方
·
2024-01-26 05:09
人工智能
人工智能(AI)技术应用:解锁未来的无限可能
通过大数据分析和
机器学习
,人工智能可以帮助医生更准确地诊断疾病、制定治疗方案,缩短治疗时间,提高治疗效果。
广州硅基技术官方
·
2024-01-26 05:38
人工智能
2018-11-28
机器学习
打卡
05课机器如何学习有监督学习SupervisedLearning:有标签label无监督学习UnsupervisedLearning:无标签06课三要素数据向量空间模型VSM,x特征向量Featurevector,y标签模型可以看做函数,通过训练数据得到。算法有监督为主:损失函数(LossFunction)L(y,y’)=L(y,f(x)):针对一个数据代价函数(CostFunction)J(th
Rackar
·
2024-01-26 04:36
特征工程自动化如何为
机器学习
带来重大变化
摘要:
机器学习
中最重要的领域之一是特征工程,却被严重地忽视了。这个重要领域中最成熟的工具就是Featuretools,一个开源的Python库。
城市中迷途小书童
·
2024-01-26 04:17
机器学习
算法
1、朴素贝叶斯分类器:https://www.cnblogs.com/csguo/p/7804355.html
Rainysong
·
2024-01-26 02:52
【Spark】pyspark 基于DataFrame使用MLlib包
另外,根据Spark文档,现在主要的Spark
机器学习
API是spark.ml包中基于DataFrame的一套模型。1ML包的介绍从顶层上看,ML包主要包含三大抽象类:转换器、预测器和工作流。
beautiful_huang
·
2024-01-26 02:37
Spark
spark
我的2023年的总结
年初,我意识到AI和
机器学习
已经成为不可逆转的趋势,尤其是在自然语言处理和图像识别领域。因此,我决定深入学习这些技术,并将其应用到我的日常工作中。我开始系统地学习深度学习框架
编程千纸鹤
·
2024-01-26 00:48
文档资料
年终总结
活动参与
02 深度学习介绍【动手学深度学习v2】
自然语言处理:语言->符号计算机视觉:在一个图片里可以帮你做一些处理->图片很难用符号解释->使用概率模型深度学习:是
机器学习
的一种、可以做自然语言处理、计算机视
不安全的安保
·
2024-01-26 00:15
动手学深度学习
机器学习
深度学习
人工智能
神经网络
chatgpt
PyTorch的衍生资源
以下是PyTorch发展过程中的几个关键里程碑事件:2016年:PyTorch于2016年首次发布,作为一个基于动态计算图的开源
机器学习
库,它提供了自动微分功能,并强调代码可读性和灵活性。
科学禅道
·
2024-01-26 00:23
PyTorch
pytorch
人工智能
python
深度学习
开源
计算机视觉
音视频
【基础配置】Python2/Python3并存安装配置教程
它可以应用于多种领域,如Web开发、数据科学、人工智能、
机器学习
、科学计算、自动化测试等。Python由GuidovanRossum于1989年底发明,目前已成为世界上最流行的编程语言之一。
晚风不及你ღ
·
2024-01-25 23:26
【工作笔记】
系统架构
python
开发语言
Day 1322:架构师训练营学习总结(w13)
本周主要讲了Spark流计算、数据分析和
机器学习
。Spark的主要特点是DAG切分多阶段计算、内存存储中间结果、RDD的编程模型。RDD是Spark的核心概念。
kafkaliu
·
2024-01-25 22:18
机器学习
系列15:通过t-SNE可视化高维数据
t-SNE的全称是t-distributedstochasticneighborembedding(t-分布随机领域嵌入),这是一种非线性降维技术。而PCA和LDA是线性的降维技术。t-SNE通常用来在二维或者三维空间中可视化复杂数据集。简单来说,t-SNE试图发现数据集中的样本在原始高维空间中距离的概率分布,然后再去低维空间中重建这种概率分布。我们通过t-SNE将高维空间中的数据点嵌入到了低维空
加百力
·
2024-01-25 22:38
深度学习
机器学习
信息可视化
人工智能
2016年不可错过的21个深度学习视频、教程和课程
几年之前,深度学习还是
机器学习
里面一个不太受人关注的领域。随着神经网络和大数据的出现,很多复杂任务的实现已经成为可能。2009年时,深度学习还是一个新兴领域,只有少数人认为这是一个值得研究的领域。
wd_cloud
·
2024-01-25 22:31
神经网络
Python学习笔记--变量与注释
以下是“变量与注释”章节的要点
知识总结
:1、变量和注释决定“第一印象”:a>变量和注释是代码里最接近自然语
诚外无物0106
·
2024-01-25 21:29
python
学习
笔记
上一页
42
43
44
45
46
47
48
49
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他