【机器学习】随机森林(Random Forest)、GBDT(Gradient Boosting Decision Tree)、XGBoost(eXtreme Gradient Boosting)
随机森林步骤bootstrappeddataset:创建一个引导数据集根据引导数据集创建决策树,每一步用变量的一个随机子集(列的随机子集)创建不断重复上述两个过程bagging:bootstrapping+aggregateGBDT好处:决策树算法相比于其他的算法需要更少的特征工程,比如可以不用做特征标准化,可以很好的处理字段缺失的数据,也可以不用关心特征间是否相互依赖等。决策树能够自动组合多个特