U-Net: Convolutional Networks for Biomedical Image Segmentation(CVPR2015)
文章目录AbstractIntroductionNetworkArchitectureConclusiontorchcodehh源代码Abstract人们普遍认为,深度网络的成功训练需要成千上万个带注释的训练样本。在这篇论文中,我们提出了一个网络和训练策略,该策略依赖于数据增强的强大使用,以更有效地利用可用的注释样本。该体系结构包括捕获上下文的收缩路径和支持精确定位的对称扩展路径。我们表明,这样的