GEE:梯度提升树(Gradient Boosting Tree)回归教程(样本点、特征添加、训练、精度、参数优化)
作者:CSDN@_养乐多_对于分类问题,这个输出通常是一个类别标签,而对于回归问题,输出通常是一个连续的数值。回归可以应用于多种场景,包括预测土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等。本文将介绍在GoogleEarthEngine(GEE)平台上进行梯度提升树(GradientBoostingTree)回归的方法和代码,其中包括样本点格式介绍