MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION
abstract领域自适应在解决许多应用遇到的领域转换问题方面发挥了重要的作用。这个问题是由于训练用的数据和实际测试的真实场景数据的分布差异造成的。在本文中,我们介绍了一种新的多尺度域自适应YOLO(MS-DAYOLO)框架,该框架在最近引入的YOLOv4对象检测器的不同尺度上使用多个域自适应路径和相应的域分类器来生成域不变特征。我们的实验表明,当使用所提出的MSDAYOLO训练YOLOv4时,以