本人是一名数学系研究生,于2017年底第一次接触python和机器学习,作为一名新手,欢迎与大家交流。
我主要给大家讲解代码,理论部分给大家推荐3本书:
《机器学习实战中文版》
《机器学习》周志华
《统计学习方法》李航
以上3本书,第一本是基于python2的代码实现;剩余两本主要作为第一本书理论省略部分的补充,理论大部分都讲得很细。
博客上关于机器学习实战理论解释都很多,参差不齐,好作品也大都借鉴了以上3本书,网上有很多电子版的书。
与其看看一些没用的博客,真心不如以上3本书有收获。
说实话,学习一定要静下心来,切忌浮躁。不懂可以每天看一点,每天你懂一点,天天积累就多了。
操作系统:windows8.1
python版本:python3.6
运行环境:spyder(anaconda)
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 28 14:46:29 2018
@author: Loulch C.C
"""
#由于本章理论难,所以代码也难,代码相当于是对理论的翻译,有些地方不太好解释,希望大家见谅。
import matplotlib.pyplot as plt
from numpy import * #并不建议这样使用,但有时为了敲代码简单,也可以
#读取数据集和类别标
def loadDataSet(fileName):
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines(): #逐行读取,滤除空格等
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])#添加数据
labelMat.append(float(lineArr[-1])) #添加标签
return dataMat,labelMat
def showDataSet(dataMat, labelMat):
data_plus = [] #正样本
data_minus = [] #负样本
for i in range(len(dataMat)):
if labelMat[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = array(data_plus) #转换为numpy矩阵
data_minus_np = array(data_minus) #转换为numpy矩阵
plt.scatter(data_plus_np.T[0], data_plus_np.T[1],marker='s') #正样本散点图
plt.scatter(data_minus_np.T[0], data_minus_np.T[1]) #负样本散点图
plt.show()
if __name__ == '__main__':
dataMat, labelMat = loadDataSet('testSet.txt')
showDataSet(dataMat, labelMat)
def selectJrand(i, m):
"""
函数说明:随机选择alpha_j的索引值
Parameters:
i - alpha_i的索引值
m - alpha参数个数
Returns:
j - alpha_j的索引值
"""
j = i #选择一个不等于i的j
while (j == i):
j = int(random.uniform(0, m))
return j
def clipAlpha(aj,H,L):
"""
函数说明:修剪alpha_j
Parameters:
aj - alpha_j的值
H - alpha上限
L - alpha下限
Returns:
aj - 修剪后的alpah_j的值
"""
if aj > H:
aj = H
if L > aj:
aj = L
return aj
#简化版SMO算法
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
b = 0; m,n = shape(dataMatrix)
alphas = mat(zeros((m,1)))
iter_num = 0
while (iter_num < maxIter):
alphaPairsChanged = 0
for i in range(m):
#步骤1:计算误差Ei
fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
Ei = fXi - float(labelMat[i])
#优化alpha,更设定一定的容错率。
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or \
((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
j = selectJrand(i,m)
#步骤1:计算误差Ej
fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
Ej = fXj - float(labelMat[j])
alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
#步骤2:计算上下界L和H
if (labelMat[i] != labelMat[j]):
L = max(0, alphas[j] - alphas[i])
H = min(C, C + alphas[j] - alphas[i])
else:
L = max(0, alphas[j] + alphas[i] - C)
H = min(C, alphas[j] + alphas[i])
if L==H: print("L==H"); continue
#步骤3:计算eta
eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - \
dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
if eta >= 0: print("eta>=0"); continue
#步骤4:更新alpha_j
alphas[j] -= labelMat[j]*(Ei - Ej)/eta
#步骤5:修剪alpha_j
alphas[j] = clipAlpha(alphas[j],H,L)
if (abs(alphas[j] - alphaJold) < 0.00001): print("alpha_j变化太小"); continue
#步骤6:更新alpha_i
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
#步骤7:更新b_1和b_2
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T\
- labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T\
- labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
#步骤8:根据b_1和b_2更新b
if (0 < alphas[i]) and (C > alphas[i]): b = b1
elif (0 < alphas[j]) and (C > alphas[j]): b = b2
else: b = (b1 + b2)/2.0
alphaPairsChanged += 1
print("第%d次迭代 样本:%d, alpha优化次数:%d" % (iter_num,i,alphaPairsChanged))
if (alphaPairsChanged == 0): iter_num += 1
else: iter_num = 0
print("迭代次数: %d" % iter_num)
return b,alphas
""""
def showClassifer(dataMat, w, b):
#绘制样本点
data_plus = [] #正样本
data_minus = [] #负样本
for i in range(len(dataMat)):
if labelMat[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = array(data_plus) #转换为numpy矩阵
data_minus_np = array(data_minus) #转换为numpy矩阵
plt.scatter(transpose(data_plus_np)[0], transpose(data_plus_np)[1], s=30, alpha=0.7,marker='s')
plt.scatter(transpose(data_minus_np)[0], transpose(data_minus_np)[1], s=30, alpha=0.7)
#绘制直线
x1 = max(dataMat)[0]
x2 = min(dataMat)[0]
a1, a2 = w
b = float(b)
a1 = float(a1[0])
a2 = float(a2[0])
y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
plt.plot([x1, x2], [y1, y2])
#找出支持向量点
for i, alpha in enumerate(alphas):
if abs(alpha) > 0:
x, y = dataMat[i]
plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
plt.show()
"""
def get_w(dataMat, labelMat, alphas):
alphas, dataMat, labelMat = array(alphas), array(dataMat), array(labelMat)
w = dot((tile(labelMat.reshape(1, -1).T, (1, 2)) * dataMat).T, alphas)
return w.tolist()
"""
if __name__ == '__main__':
dataMat, labelMat = loadDataSet('testSet.txt')
b,alphas = smoSimple(dataMat, labelMat, 0.6, 0.001, 40)
w = get_w(dataMat, labelMat, alphas)
showClassifer(dataMat, w, b)
"""
#完整的Platt SMO算法
class optStruct:
"""
函数说明:初始化数据结构,维护所有需要操作的值
Parameters:
dataMatIn - 数据矩阵
classLabels - 类别标签
C - 惩罚系数
toler - 容错率
"""
def __init__(self, dataMatIn, classLabels, C, toler):
self.X = dataMatIn #数据矩阵
self.labelMat = classLabels #类别标签
self.C = C #惩罚系数
self.tol = toler #容错率
self.m = shape(dataMatIn)[0] #数据矩阵行数
self.alphas = mat(zeros((self.m,1))) #根据矩阵行数初始化alpha参数为0
self.b = 0 #初始化b参数为0
self.eCache = mat(zeros((self.m,2)))
#根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
"""
def calcEk(oS, k):
fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T) + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
"""
def selectJ(i, oS, Ei):
"""
函数说明:内循环启发方式
Parameters:
i - 标号为i的数据的索引值
oS - 数据结构
Ei - 标号为i的数据误差
Returns:
j, maxK - 标号为j或maxK的数据的索引值
Ej - 标号为j的数据误差
"""
maxK = -1; maxDeltaE = 0; Ej = 0 #初始化值
oS.eCache[i] = [1,Ei] #首先将输入值Ei在缓存中设置为有效的
validEcacheList = nonzero(oS.eCache[:,0].A)[0] #返回误差不为0的数据的索引值
if (len(validEcacheList)) > 1: #有不为0的误差
for k in validEcacheList: #遍历,找到最大的Ek
if k == i: continue #若k=i,结束本次循环,并开始下一次循环
Ek = calcEk(oS, k) #计算Ek
deltaE = abs(Ei - Ek) #计算|Ei-Ek|
if (deltaE > maxDeltaE): #找到maxDeltaE
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej #返回maxK,Ej
else: #初次循环时,采用随机选择alpha_j
j = selectJrand(i, oS.m) #随机选择alpha_j的索引值
Ej = calcEk(oS, j) #计算Ej
return j, Ej #j,Ej
def updateEk(oS, k):
"""
函数说明:计算Ek,并更新误差缓存
Parameters:
oS - 数据结构
k - 标号为k的数据的索引值
Returns:
无
"""
Ek = calcEk(oS, k) #计算Ek
oS.eCache[k] = [1,Ek] #更新误差缓存
"""
def innerL(i, oS):
#步骤1:计算误差Ei
Ei = calcEk(oS, i)
#优化alpha,设定一定的容错率。
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or\
((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j,Ej = selectJ(i, oS, Ei) #使用内循环启发方式2选择alpha_j,并计算Ej
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#步骤2:计算上下界L和H
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H:
print("L==H")
return 0
#步骤3:计算eta
eta = 2.0 * oS.X[i,:] * oS.X[j,:].T - oS.X[i,:] * oS.X[i,:].T - oS.X[j,:] * oS.X[j,:].T
if eta >= 0:
print("eta>=0")
return 0
#步骤4:更新alpha_j
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
#步骤5:修剪alpha_j
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
updateEk(oS, j) #更新Ej至误差缓存
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
print("alpha_j变化太小")
return 0
#步骤6:更新alpha_i
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
updateEk(oS, i) #更新Ei至误差缓存
#步骤7:更新b_1和b_2
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T \
- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T \
- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
#步骤8:根据b_1和b_2更新b
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else:
return 0
"""
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin',0)):
"""
函数说明:选择第一个alpha值的外循环
Parameters:
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 惩罚系数
toler - 容错率
maxIter - 最大迭代次数
Returns:
oS.b - SMO算法计算的b
oS.alphas - SMO算法计算的alphas
"""
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler,kTup)
#初始化数据结构
iter = 0 #初始化当前迭代次数
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
#遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
alphaPairsChanged = 0
if entireSet: #遍历整个数据集
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #使用内循环选择第二个alpha
print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d"
% (iter,i,alphaPairsChanged))
iter += 1
else: #遍历非边界值
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
#遍历不在边界0和C的alpha
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS) #使用内循环选择第二个alpha
print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" %
(iter,i,alphaPairsChanged))
iter += 1
if entireSet: #遍历一次后改为非边界遍历
entireSet = False
elif (alphaPairsChanged == 0): #如果alpha没有更新,计算全样本遍历
entireSet = True
print("迭代次数: %d" % iter)
return oS.b,oS.alphas #返回SMO算法计算的b和alphas
def showClassifer(dataMat, classLabels, w, b):
"""
函数说明:分类结果可视化
Parameters:
dataMat - 数据矩阵
w - 直线法向量
b - 直线解决
Returns:
无
"""
#绘制样本点
data_plus = [] #正样本
data_minus = [] #负样本
for i in range(len(dataMat)):
if classLabels[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = array(data_plus) #转换为numpy矩阵
data_minus_np = array(data_minus) #转换为numpy矩阵
plt.scatter(transpose(data_plus_np)[0], transpose(data_plus_np)[1], s=30, alpha=0.7)
plt.scatter(transpose(data_minus_np)[0], transpose(data_minus_np)[1], s=30, alpha=0.7)
#绘制直线
x1 = max(dataMat)[0]
x2 = min(dataMat)[0]
a1, a2 = w
b = float(b)
a1 = float(a1[0])
a2 = float(a2[0])
y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
plt.plot([x1, x2], [y1, y2])
#找出支持向量点
for i, alpha in enumerate(alphas):
if abs(alpha) > 0:
x, y = dataMat[i]
plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
plt.show()
def calcWs(alphas,dataArr,classLabels):
"""
函数说明:计算w
Parameters:
dataArr - 数据矩阵
classLabels - 数据标签
alphas - alphas值
Returns:
w - 计算得到的w
"""
X = mat(dataArr); labelMat = mat(classLabels).transpose()
m,n = shape(X)
w = zeros((n,1))
for i in range(m):
w += multiply(alphas[i]*labelMat[i],X[i,:].T)
return w
"""
if __name__ == '__main__':
dataArr, classLabels = loadDataSet('testSet.txt')
b, alphas = smoP(dataArr, classLabels, 0.6, 0.001, 40)
w = calcWs(alphas,dataArr, classLabels)
showClassifer(dataArr, classLabels, w, b)
"""
#利用核函数对非线性数据进行分类
class optStruct:
"""
函数说明:初始化数据结构,维护所有需要操作的值
Parameters:
dataMatIn - 数据集矩阵
classLabels - 类别标签
C - 惩戒系数
toler - 容错率
kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
"""
def __init__(self, dataMatIn, classLabels, C, toler, kTup):
self.X = dataMatIn #数据矩阵
self.labelMat = classLabels #数据标签
self.C = C #松弛变量
self.tol = toler #容错率
self.m = shape(dataMatIn)[0] #数据矩阵行数
self.alphas = mat(zeros((self.m,1))) #根据矩阵行数初始化alpha参数为0
self.b = 0 #初始化b参数为0
self.eCache = mat(zeros((self.m,2)))
#根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
self.K = mat(zeros((self.m,self.m))) #初始化核K
for i in range(self.m): #计算所有数据的核K
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def kernelTrans(X, A, kTup):
"""
函数说明:函数说明:通过核函数将数据转换更高维的空间
Parameters:
X - 数据矩阵
A - 单个数据的向量
kTup - 包含核函数信息的元组
Returns:
K - 计算的核K
"""
m,n = shape(X)
K = mat(zeros((m,1)))
if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。
elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = exp(K/(-1*kTup[1]**2)) #计算高斯核K,kTup[1]就是高斯核函数公式的delta
else: raise NameError('核函数无法识别') #报错
return K #返回计算的核K
def calcEk(oS, k):
"""
函数说明:计算误差
Parameters:
oS - 数据结构
k - 标号为k的数据
Returns:
Ek - 标号为k的数据误差
"""
fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
def innerL(i, oS):
"""
函数说明:利用启发式方法选择第二个alpha的内循环
Parameters:
i - 标号为i的数据的索引值
oS - 数据结构
Returns:
1 - 有一对alpha值发生变化
0 - 没有一对alpha值发生变化或变化太小
"""
#步骤1:计算误差Ei
Ei = calcEk(oS, i)
#优化alpha,设定一定的容错率。
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or\
((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j,Ej = selectJ(i, oS, Ei) #使用内循环启发方式2选择alpha_j,并计算Ej
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#步骤2:计算上下界L和H
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H:
print("L==H")
return 0
#步骤3:计算eta
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
if eta >= 0:
print("eta>=0")
return 0
#步骤4:更新alpha_j
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
#步骤5:修剪alpha_j
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
updateEk(oS, j) #更新Ej至误差缓存
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
print("alpha_j变化太小")
return 0
#步骤6:更新alpha_i
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
updateEk(oS, i) #更新Ei至误差缓存
#步骤7:更新b_1和b_2
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i]\
- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]\
- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
#步骤8:根据b_1和b_2更新b
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else:
return 0
def testRbf(k1 = 1.3):
"""
函数说明:测试函数
Parameters:
k1 - 使用高斯核函数的时候表示到达率
Returns:
无
"""
dataArr,labelArr = loadDataSet('testSetRBF.txt') #加载训练集
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 100, ('rbf', k1))
#根据训练集计算b和alphas
datMat = mat(dataArr); labelMat = mat(labelArr).transpose()
svInd = nonzero(alphas.A > 0)[0]
#利用nonzero函数获得非负alpha的索引值,进而得到支持向量
sVs = datMat[svInd] #通过索引获得支持向量所对应的样本
labelSV = labelMat[svInd]; #通过索引获得支持向量所对应的类别标签
print("支持向量个数:%d" % shape(sVs)[0])
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #计算各个点的核
predict = kernelEval.T * multiply(labelSV,alphas[svInd]) + b
#根据支持向量的点,计算超平面,返回预测结果
if sign(predict) != sign(labelArr[i]): errorCount += 1
#返回数组中各元素的正负符号,用1和-1表示,并统计错误个数
c1=(float(errorCount)/m)*100
print("训练集错误率: %.2f%%" % c1) #打印错误率
dataArr,labelArr = loadDataSet('testSetRBF2.txt') #加载测试集
errorCount = 0
datMat = mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #计算各个点的核
predict=kernelEval.T *multiply(labelSV,alphas[svInd]) + b
#根据支持向量的点,计算超平面,返回预测结果
if sign(predict) != sign(labelArr[i]): errorCount += 1
#返回数组中各元素的正负符号,用1和-1表示,并统计错误个数
c2=(float(errorCount)/m)*100
print("测试集错误率: %.2f%%" % c2) #打印错误率
return [c1,c2]
def showDataSet(dataMat, labelMat):
"""
函数说明:数据可视化
Parameters:
dataMat - 数据矩阵
labelMat - 数据标签
Returns:
无
"""
data_plus = [] #正样本
data_minus = [] #负样本
for i in range(len(dataMat)):
if labelMat[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = array(data_plus) #转换为numpy矩阵
data_minus_np = array(data_minus) #转换为numpy矩阵
plt.scatter(transpose(data_plus_np)[0], transpose(data_plus_np)[1]) #正样本散点图
plt.scatter(transpose(data_minus_np)[0], transpose(data_minus_np)[1]) #负样本散点图
plt.show()
"""
if __name__=='__main__':
testRbf()
#showDataSet(dataMat, labelMat)
"""
def multiTest():
numTests = 10; errorSum1=0.0;errorSum2=0.0
for k in range(numTests):
errorSum1+=float(testRbf()[0])
errorSum2+=float(testRbf()[1])
print ("在%d次迭代后训练集的错误率是: %.2f%%" % (numTests, errorSum1/float(numTests)))
print ("在%d次迭代后测试集的错误率是: %.2f%%" % (numTests, errorSum2/float(numTests)))
"""
if __name__=='__main__':
multiTest()
"""
#基于SVM的数字识别
def img2vector(filename):
"""
函数说明:将32x32的二进制图像转换为1x1024向量。
Parameters:
filename - 文件名
Returns:
returnVect - 返回的二进制图像的1x1024向量
"""
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def loadImages(dirName):
"""
函数说明:加载图片
Parameters:
dirName - 文件夹的名字
Returns:
trainingMat - 数据矩阵
hwLabels - 数据标签
"""
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName)
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels
def testDigits(kTup=('rbf', 10)):
"""
函数说明:测试函数
Parameters:
kTup - 包含核函数信息的元组
Returns:
无
"""
dataArr,labelArr = loadImages('trainingDigits')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10, kTup)
datMat = mat(dataArr); labelMat = mat(labelArr).transpose()
svInd = nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print("支持向量个数:%d" % shape(sVs)[0])
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T *multiply(labelSV,alphas[svInd]) + b
if sign(predict) != sign(labelArr[i]): errorCount += 1
print("训练集错误率: %.2f%%" % (float(errorCount)/m))
dataArr,labelArr = loadImages('testDigits')
errorCount = 0
datMat = mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict) != sign(labelArr[i]): errorCount += 1
print("测试集错误率: %.2f%%" % (float(errorCount)/m))
#"""
if __name__ == '__main__':
testDigits()
#"""