- Flink CDC报错ArrayIndexOutOfBoundsException解决思路
学亮编程手记
大数据flinkdoris
FlinkCDC用两个并行度会报错。一个并行度就不会报错。不知道是什么原因?同步java.lang.ArrayIndexOutOfBoundsException?解决思路看日志,应该是mysql文本字段中有换行符之类的,应该会有一个url的报错提示,然后curl那个url看具体报错。这个问题可能是由于FlinkCDC的并行度设置不正确导致的。当您尝试使用两个并行度时,可能会遇到数组越界异常(jav
- Flink 源码笔记03—StreamGraph到JobGraph
董嘻嘻
Flink源码笔记flinkjavabigdata
文章目录简介入口函数traverseStreamGraphAndGenerateHashesgenerateDeterministicHashgenerateUserSpecifiedHashsetChainingisChainable简介JobGraph可以认为是StreamGraph的优化图,它将一些符合特定条件的operators合并成一个operatorchain,以减少数据在节点之间序列
- flink核心特性
24k小善
flink大数据java架构
ApacheFlink核心特性详解一、流处理与批处理的统一Flink的核心设计理念之一是将流处理和批处理统一在一个框架中。这种统一性使得Flink在处理实时数据和批量数据时具有高度的灵活性和一致性。1.流处理与批处理的统一计算引擎流处理作为批处理的特例:Flink将批处理视为有限流(FiniteStream),从而实现了流处理和批处理的统一。统一API:Flink提供了DataStream和Dat
- flink反压详解
24k小善
flink架构大数据AI编程
Flink背压/反压(Backpressure)详解在ApacheFlink中,背压(Backpressure)是一个常见的性能问题,通常表现为数据流在某些节点处积压,导致整体处理速度下降甚至停滞。背压的发生可能源于硬件资源限制、任务逻辑复杂性、数据分布不均或外部系统瓶颈等因素。本文将从多个角度详细讲解Flink的背压问题,包括其成因、影响以及解决方案。一、什么是Flink背压?背压是指在数据流处
- 十四、Flink源码阅读--JobGraph生成过程
灰二和杉菜
ApacheFlinkFlinkJobGraph生成源码分析
上篇分析了client整个提交任务过程,最终提交的是一个JobGraph对象,那么是如何从jar或sql任务转为JobGraph的呢,这篇我们仔细研究一下,版本为1.6.3源码分析上篇我们介绍client端提交任务最终会到到ClusterClient.run()方法,就在这个方法中封装了JobGraph的步骤。publicJobSubmissionResultrun(FlinkPlancompil
- 最新Apache Hudi 1.0.1源码编译详细教程以及常见问题处理
Toroidals
大数据组件安装部署教程hudi1.0.1源码编译教程最新
1.最新ApacheHudi1.0.1源码编译2.Flink、Spark、Hive集成Hudi1.0.13.flinkstreaming写入hudi目录1.版本介绍2.安装maven2.1.下载maven2.2.设置环境变量2.3.添加Maven镜像3.编译hudi3.1.下载hudi源码3.2.修改hudi源码3.3.修改hudi-1.0.1/pom.xml,注释或去掉410行内容3.4.安装c
- Flink提交pyflink任务
Leo_Hu666
flink大数据pythonpyflink
1.官方文档:flink1.14:https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/deployment/cli/#submitting-pyflink-jobsflink1.18:https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deploy
- Flink在指定时间窗口内统计均值,超过阈值后报警
小的~~
flink均值算法大数据
1、需求统计物联网设备收集上来的温湿度数据,如果5分钟内的均值超过阈值(30摄氏度)则发出告警消息,要求时间窗口和阈值可在管理后台随时修改,实时生效(完成当前窗口后下一个窗口使用最新配置)。物联网设备的数据从kafka中读取,配置数据从mysql中读取,有个管理后台可以调整窗口和阈值大小。2、思路使用flink的双流join,配置数据使用广播流,设备数据使用普通流。3、实现代码packagecu.
- Flink SQL 优化实战 - 维表 JOIN 优化
腾讯云大数据
大数据数据库flinksql
作者:龙逸尘,腾讯CSIG高级工程师背景介绍维表(DimensionTable)是来自数仓建模的概念。在数仓模型中,事实表(FactTable)是指存储有事实记录的表,如系统日志、销售记录等,而维表是与事实表相对应的一种表,它保存了事实表中指定属性的相关详细信息,可以跟事实表做关联;相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。在实际生产中,我们经常会有这样的需求,以原始数据流
- 阿里云RDS到亚马逊云RDS的实时数据同步方案详解
ivwdcwso
运维阿里云云计算awskda数据同步
1.需求背景在当今的多云环境中,企业经常需要在不同云平台之间同步数据。本文将详细介绍如何实现从阿里云RDSMySQL数据库到亚马逊云RDSMySQL数据库的实时数据同步。这种同步对于数据备份、跨区域数据访问、数据分析等场景都非常有用。2.方案概述我们将使用AWSKinesisDataAnalytics(KDA)作为核心组件来实现这个实时同步方案。KDA基于ApacheFlink,支持使用SQL或J
- Flink 安装阿里云docker compose部署及相关组件
vellerzheng
部署运维flinkdocker大数据
Flink安装脚本文件version:"2.2"services:jobmanager:image:flink:1.15.2-java11expose:-"6123"ports:-"8081:8081"command:jobmanagervolumes:-/home:/homeenvironment:-JOB_MANAGER_RPC_ADDRESS=jobmanagerprivileged:tru
- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- Flink-k8s弹性扩缩容原理和部署步骤
spring208208
flinkkubernetes贪心算法
背景和现状目前行内提交flink作业采用Nativekubernetes模式,提交作业时会指定并行度和taskmanager使用的内存及cpu数量。这种情况下会导致在作业运行高峰可能存在资源不足问题运行低峰又会造成资源浪费,这种粗放的使用资源的模式在实时计算业务量不多的时候还可以勉强接受,而随着实时计算业务的增多,则会造成大量的资源浪费和性能瓶颈。为了使存储和计算资源得到更加合理有效的使用,能跟据
- 20250124 Flink 增量聚合 vs 全量聚合
靈臺清明
Flinkflink
1.增量聚合vs全量聚合(1)增量聚合(ReduceFunction/AggregateFunction)工作方式:逐步计算:每一条数据到达窗口时,立即与当前聚合结果结合,生成新的中间结果。仅保存中间状态:内存中只保留当前的聚合值(如累加和、最大值等),不保存原始数据。触发窗口计算时:直接输出最终的聚合结果,无需遍历所有数据。示例:计算窗口内数字的和DataStreamnumbers=...;nu
- Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
大数据flink阿里云数据分析
摘要:本文整理自FlinkForwardAsia2024大会中阿里云DataWorks数据集成团队陈吉通的分享,主要分享FlinkCDC在阿里云DataWorks数据集成入湖场景的应用实践。内容分为以下四个部分:1.阿里云DataWorks数据集成介绍2.DataWorks数据集成入湖解决方案的架构和原理3.DataWorks数据集成入湖场景的产品化案例分享4.未来规划一、阿里云DataWorks
- Flink-提交job
笨鸟先-森
大数据flink
目录一、Flink流处理扩展及说明二、Flink部署三、Standalone模式四、在命令行提交job:五、在网页中提交flinkjob一、Flink流处理扩展及说明涉及:自定义线程优先级=socket流中读取数据并行度只能是11、特定的算子设定了并行度最优先2、算子没有设定并行度就是用整体运行环境设置的并行度3、环境的并行度没有设置就使用提交时候提交参数设置的并行度4、都没有设置就遵循flink
- Flink 实践教程-入门(10):Python作业的使用
腾讯云大数据
数据库大数据javapython数据分析
作者:腾讯云流计算Oceanus团队流计算Oceanus简介流计算Oceanus是大数据产品生态体系的实时化分析利器,是基于ApacheFlink构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算Oceanus以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。教程链接:Flink实践教程-入门(10):Python作业的使用-云+社区-
- pyflink作业提交的踩坑过程,看完少走两个星期弯路
Li_yi_chao
大数据
flink在努力地将Python生态和大数据生态融合,但目前的版本还不够成熟,尤其是在官方对python现有资料有限的情况下,用户想要使用python完成一个flinkjob并提交到flink平台上,还是有很多雷需要踩的。以下对pyflink环节问题,pythonjob编写到提交做了总结,可减少不必要的弯路。一、部署环境JDK1.8+&Python3.5+(3.7.6)&apache-flink1
- Paimon实战 -- paimon原理解析
阿华田512
Paimon学习必读系列paimon数据湖paimon介绍flink写入
一.简介ApachePaimon原名FlinkTableStore,2022年1月在ApacheFlink社区从零开始研发,Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。二.基本概念1、快照(Snapshot)快照捕获表在某个时间点的状态。用户可以通过最新的快照访
- paimon实战 --核心原理和Flink应用进阶
阿华田512
Paimon学习必读系列Flink学习必读系列flink大数据flink读写paimon数据湖
简介Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,推出新一代的StreamingLakehouse技术,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。Flink社区内部孵化了FlinkTableStore(简称FTS)子项目,一个真正面向Streaming以及Realtime的数据湖存储项目。2023年3月1
- 【Apache Paimon】-- 16 -- 利用 paimon-flink-action 同步 kafka 数据到 hive paimon 表中
oo寻梦in记
ApachePaimonapacheflinkkafkaapachepaimonpaimon
目录引言CDC技术概述2.1什么是CDC2.2CDC的应用场景Kafka作为CDC数据源的原理与优势3.1Kafka的基本架构3.2Kafka在CDC中的角色
- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- Flink怎么保证Exactly - Once 语义
我明天再来学Web渗透
后端技术总结flink大数据开源开发语言
Exactly-Once语义是消息处理领域中的一种严格数据处理语义,指每条数据都只会被精确消费和处理一次,既不会丢失,也不会重复。以下从消息传递语义对比、实现方式、应用场景等方面详细介绍:与其他消息传递语义对比在消息传递中,常见三种语义:最多一次(at-most-once):消息可能丢失,但绝不会重复。至少一次(at-least-once):消息不会丢失,但可能重复。精确一次(exactly-on
- Flink内存配置和优化
Leo_Hu666
flink大数据
在ApacheFlink1.18的Standalone集群中,内存设置是一个关键配置,它直接影响集群的性能和稳定性。Flink的内存配置主要包括JobManager和TaskManager的内存分配。以下是如何在Standalone模式下配置内存的详细说明。JobManager内存配置JobManager是Flink集群的主节点,负责协调任务调度和资源管理。它的内存配置可以通过以下参数进行调整:配
- Flink入门-通过DataStream Api实现消费欺诈检测
似水_逆行
Flinkflink大数据
1信用卡消费欺诈信用卡消费欺诈是指在信用卡的使用过程中,通过不正当手段获取或使用信用卡资金,侵犯他人或银行的财产权益的行为。这种行为可能包括但不限于盗刷、伪造信用卡、冒用他人信用卡、恶意透支等2模拟场景我们模拟不同账户的信用卡消费记录,通过分析实时的消费记录,针对常见的消费欺诈进行检测,检测出来的欺诈行为进行告警。3核心流程与代码1)通过TransactionSource构建消费记录,主要包含ac
- Flink-DataStream快速上手
code@fzk
大数据flink大数据java
文章目录1.安装部署安装2.执行任务Standalone模式启动/停止执行任务Yarn模式Session-cluster模式启动yarn-session执行任务Per-Job-Cluster模式3.执行环境EnvironmentgetExecutionEnvironment(常用)createLocalEnvironmentcreateRemoteEnvironmentSource、SinkTra
- Flink之DataStream API 概述
小虎牙_43437171
flinkflink大数据java
DataStreamAPI概述前言一、DataStreamAPI应用实例DataStream程序主要包含3部分:1、StreamExecutionEnvironment初始化:该部分主要创建和初始化StreamExecutionEnvironment,提供通过DataStreamAPI构建Flink作业需要的执行环境,包括设定ExecutionConfig、CheckpointConfig等配置信
- Flink KafkaConsumer offset是如何提交的
红烛暗盗梦
flink大数据
一、fllink内部配置client.id.prefix,指定用于KafkaConsumer的客户端ID前缀partition.discovery.interval.ms,定义KafkaSource检查新分区的时间间隔。请参阅下面的动态分区检查一节register.consumer.metrics指定是否在Flink中注册KafkaConsumer的指标commit.offsets.on.chec
- Java分布式流处理,flink+kafka实现电商网站个性化商品推荐系统
图苑
分布式javaflink
文章目录戳底部名片,一起变现技术栈选择设计实现思路实现步骤及示例代码1.数据采集2.数据预处理3.特征工程4.模型训练5.结果输出6.前端展示戳底部名片,一起变现在现代电商环境中,用户每天都会浏览大量商品页面,而这些行为数据中蕴藏着丰富的信息。通过分析用户的浏览历史、购买记录以及对特定商品的兴趣程度,我们可以为用户提供更加个性化的商品推荐,从而提升用户体验和转化率。为了实现实时的个性化推荐,我们需
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文