- 周工作计划2019-03-25
MikeShine
很久没有写工作计划了。之前一个星期生了病,很难受。上个星期基本上什么都没有干。但是好的一点是,西瓜书基本都看完了。本周工作计划:机器学习分享活动(关于决策树的分享)回看一下西瓜书的东西,每一章把开头总结写一下。老师没有给具体的任务,留了再说吧。
- 机器学习(西瓜书)学习笔记导览
盛寒
机器学习西瓜书学习机器学习人工智能
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
- 机器学习LDA线性判别器代码实现
Longlongaaago
机器学习LDA线性判别分析代码实现
机器学习LDA线性判别器代码实现西瓜书P60线性判别器LDA代码实现:importnumpyasnpimportmatplotlib.pyplotaspltdefload_data(file_name):'''数据导入函数:paramfile_name:(string)训练数据位置:return:feature_data(mat)特征lable_data(mat)标签'''fr=open(file
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 2019-05-14《西瓜书》难啃
杨熊猫Yang
周志华老师的《西瓜书:机器学习》这周看完1~10章锻炼:太极云手、100手/组,3组虎刨功(简)、100个/组,2组
- 机器学习——集成学习
三三木木七
机器学习集成学习人工智能
参考:ysu老师课件+西瓜书+期末复习笔记1.集成学习的基本概念集成学习(ensemblelearing)通过构建并结合多个学习器来完成学习任务。有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。理解:集成学习是一种机器学习方法,其核心思想是将多个学习器(弱学习器)集成在一起,以达到比单个学习器更好的性能
- 西瓜书学习笔记——低维嵌入(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍低维嵌入(Low-DimensionalEmbedding)是一种降低高维数据维度的技术,目的是在保留数据特征的同时减少数据的复杂性。这种技术常用于可视化、特征学习、以及数据压缩等领域。低维嵌入的目标是将高维数据映射到一个低维空间,以便更好地理解和可视化数据。在kkk近邻学习中,随着数据维度的增加,样本之间的距离变得更加稀疏,导致KNN算法性能下降。这是因为在高维空
- 西瓜书学习笔记——核化线性降维(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
- 西瓜书学习笔记——k近邻学习(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍K最近邻(K-NearestNeighbors,KNN)是一种常用的监督学习算法,用于分类和回归任务。该算法基于一个简单的思想:如果一个样本在特征空间中的kkk个最近邻居中的大多数属于某个类别,那么该样本很可能属于这个类别。KNN算法不涉及模型的训练阶段,而是在预测时进行计算。以下是KNN算法的基本步骤:选择K值:首先,确定用于决策的邻居数量K。K的选择会影响算法的
- 西瓜书学习笔记——主成分分析(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习降维
文章目录算法介绍实验分析算法介绍主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术,用于在高维数据中发现最重要的特征或主成分。PCA的目标是通过线性变换将原始数据转换成一组新的特征,这些新特征被称为主成分,它们是原始特征的线性组合。对于一个正交属性空间(各个属性之间是线性无关的)中的样本点,存在以下两个性质的超平面可对所有样本点进行恰当的表达:最近重构性
- 朴素贝叶斯分类算法
三三木木七
#机器学习机器学习人工智能sklearn
本文介绍了朴素贝叶斯分类算法,标记后的话一般是自己简要总结的,是比较通俗易懂的,也就是必看的。参考:西瓜书,ysu老师课件【摘要】1.分类算法:分类算法的内容是根据给定特征,求出它所属类别。2.先验概率:就是根据以往的数据分析所得到的概率。后验概率:是得到信息之后重新加以修正得到的概率。3.贝叶斯决策:贝叶斯决策理论中,我们希望选择那个最小化总体期望损失的决策。决策损失的期望值通过对所有可能状态的
- 决策树的相关知识点
三三木木七
#机器学习决策树算法机器学习
参考:ysu老师课件+西瓜书1.决策树的基本概念【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。理解:它是一个树状结构,其中每个节点代表一个特征属性的判断,每个分支代表这个判断的结果,而每个叶节点(叶子)代表一种类别或回归值。关于决策树要掌握的概念:根节点(Roo
- 西瓜书学习笔记——层次聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。但实际上,每个簇都是一个集合
- 西瓜书学习笔记——密度聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍密度聚类是一种无监督学习的聚类方法,其目标是根据数据点的密度分布将它们分组成不同的簇。与传统的基于距离的聚类方法(如K均值)不同,密度聚类方法不需要预先指定簇的数量,而是通过发现数据点周围的密度高度来确定簇的形状和大小。我们基于DBSCAN算法来实现密度聚类。DBSCAN是基于一组邻域参数(ϵ,MinPts)(\epsilon,MinPts)(ϵ,MinPts)来刻
- 【机器学习·西瓜书学习笔记·线性模型】线性回归——最小二乘法(least square method)
慈善区一姐
机器学习学习线性回归
线性模型的基本形式给定由个属性描述的实例,其中是在第个属性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成:和确定后,模型就得以确定参数查阅表把数据集表示为一个m*(d+1)大小的矩阵,其中每行对应于一个实例,每行前d个元素对应于实例的d个属性值,最后一个元素恒置于1,即(一)均方误差(meansquarederror)基于欧几里得距
- 如何系统学习机器学习?
人邮异步社区
学习机器学习人工智能
要系统学习机器学习,首先需要掌握一些基础编程技能,如Python。其次,学习基础的数学概念,如线性代数、概率论和统计学。然后,选择一些优质的在线课程和教材进行深入学习。最后,通过实践项目来巩固所学知识。以下是一些推荐的书籍:《动手学机器学习》,"西瓜书"作者周志华力荐的机器学习入门书。本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器
- 西瓜书学习笔记——原型聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录k均值算法算法介绍实验分析学习向量量化(LVQ)算法介绍实验分析高斯混合聚类算法介绍实验分析总结k均值算法算法介绍给定样本集D={x1,x2,...,xm}D=\{x_1,x_2,...,x_m\}D={x1,x2,...,xm},k均值算法针对聚类算法所得簇划分C={C1,C2,...,Ck}\mathcal{C}=\{C_1,C_2,...,C_k\}C={C1,C2,...,Ck}最
- 大数据学习之路
金光闪闪耶
一、为什么要学习大数据?在我第一份实习的时候,忘记在什么场景下我leader突然说了一句:「干Java不就是增删改查嘛」,而恰好那时候知乎都是「干了3年Java,还是只会增删改查,迷茫」等问题,我听完leader那句话就心里一颤。因为这句话,我又一次的陷入迷茫,我不清楚自己是不是应该继续的Java,所以那段时间我干过爬虫,也撸了一阵子的西瓜书和统计学什么的。在知乎上所有相关的问题和答案我都看了,也
- 西瓜书学习笔记——Boosting(公式推导+举例应用)
Nie同学
机器学习学习笔记boosting
文章目录引言AdaBoost算法AdaBoost算法正确性说明AdaBoost算法如何解决权重更新问题?AdaBoost算法如何解决调整下一轮基学习器样本分布问题?AdaBoost算法总结实验分析引言Boosting是一种集成学习方法,旨在通过整合多个弱学习器来构建一个强学习器。其核心思想是迭代训练模型,关注之前被错误分类的样本,逐步提升整体性能。Boosting的代表算法包括AdaBoost、G
- 浙江大学《机器学习》笔记——神经网络(Neural Network)【上】
啵啵啵啵哲
机器学习笔记神经网络机器学习人工智能
写在前面·最近在学习《机器学习》.主要是看浙江大学胡浩基老师的网课,结合周志华老师的西瓜书来学.为了理清思路和推公式就敲了这样一个读书笔记.初次学习难免会有错漏,欢迎批评指正.这份笔记主要用途还是用来自己复习回顾.当然如果对大家有帮助那就更好了hhh·注:神经网络这部分的笔记大部分是基于浙大《机器学习》的逻辑进行整理的.第5章神经网络(NeuralNetwork)·神经网络的诞生是集体的智慧·近年
- 西瓜书读书笔记整理(十二) —— 第十二章 计算学习理论
smile-yan
机器学习西瓜书计算学习理论PAC
第十二章计算学习理论(上)12.1基础知识12.1.1什么是计算学习理论(computationallearningtheory)12.1.2什么是独立同分布(independentandidenticallydistributed,简称i.i.d.i.i.d.i.i.d.)以及独立同分布样本12.1.3泛化误差以及经验误差12.1.4相关数学定义表示12.1.5误差参数12.1.6映射与样本集是
- python自学(二)第二章 正则表达式|字符串匹配、函数和面向对象程序设计
BrilandLiu
pythonpython编程语言
为了能在开学后更好地融入实验室,本人计划用一个月的时间进行python3语言入门,该系列笔记适合已经有一门编程语言基础的朋友参考使用,欢迎同道者前来交流~使用教材:1.《python从入门到精通》清华大学出版社;(自带教学视频【二维码形式】)least17p/d2.《机器学习》周志华(西瓜书)清华大学出版社;least14p/d;3.BiliBili《和美女老师一起学python》视频。(一)正则
- 【机器学习】西瓜书要点个人整理
_hermit:
机器学习机器学习人工智能学习
目录前置基础知识第三章线性模型机器学习三要素1.函数集合2.目标函数3.优化方法4.模型评估方法对数几率回归(逻辑回归)第四章决策树第五章SVM第六章贝叶斯分类器第八章集成学习第九章神经网络前情提要:本文适合在学习机器学习课程前,对课程的要点进行简单预习。本文中提到的一些概念,大多是老师课上会重点讲的、考试要考的。此外,在进行复习时也可以通过这些概念引入,从而去更深入理解一些模型原理。前置基础知识
- 吃瓜教程Task1:概览西瓜书+南瓜书第1、2章
卡拉比丘流形
机器学习机器学习人工智能
由于本人之前已经学习过西瓜书,本次学习主要是对以往知识的查漏补缺,因此本博客记录了在学习西瓜书中容易混淆的点以及学习过程中的难点。更多学习内容可以参考下面的链接:南瓜书的地址:https://github.com/datawhalechina/pumpkin-book【视频链接】https://www.bilibili.com/video/BV1Mh411e7VU?p=1文章目录绪论如何对机器学习
- 西瓜书读书笔记整理(十) —— 第十章降维与度量学习
smile-yan
机器学习西瓜书
10.1k近邻学习10.1.1什么是kNN学习kNN算法(k-NearestNeighbors)是一种常用的分类和回归算法。它的基本思想是根据最近邻的样本来预测未知样本的标签或值。10.1.2kNN算法步骤kNN算法的步骤如下:计算未知样本与训练集中所有样本的距离(通常使用欧氏距离或其他距离度量方法)。选取与未知样本距离最近的k个样本。对于分类问题,根据这k个样本的标签进行投票或权重计算,确定未知
- 西瓜书第六章课后习题
lammmya
6.1试证明样本空间中任意点x到超平面(w,b)的距离为式(6.2)。画了个图在纸上进行了证明,感觉这样自会通俗易懂些。6.2试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。导入相应的包主体函数:设置参数,输出。数据特征可视化输出结果以及数据特征可视化最终结果如下图结果表明,使用线性核和高斯训练核的支持向量实际是一样的(两条线重合),且数量相同
- 机器学习西瓜书笔记1
糊了胡
机器学习机器学习笔记人工智能
第一章机器学习之绪论目录第一章机器学习之绪论一、引言二、基本术语三、假设空间四、归纳偏好五、发展历程一、引言机器学习就是致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。Mitchell给出了更形式化的定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。二、基本术语收集一组西瓜数据,(色泽=青
- 西瓜书读书笔记整理(九) —— 第九章 聚类
smile-yan
聚类支持向量机机器学习
第九章聚类9.1聚类算法概述9.1.1什么是聚类算法9.1.2聚类算法分类9.1.3聚类任务9.2性能度量(ClusterEvaluation)9.2.1外部指标(externalindex)9.2.2内部指数(internalindex)9.3距离度量(DistanceMeasures)9.3.1距离度量的性质9.3.2常见的几种距离的计算公式9.4原型聚类(prototype-basedclu
- 西瓜书*南瓜书*机器学习*周志华*第一章*学习小结
fyc300
笔记西瓜书机器学习机器学习人工智能自动驾驶
西瓜书*南瓜书*机器学习*周志华*第一章*学习小结第一章绪论1.1绪论通过一个关于瓜的故事引入了对于机器学习这门课的学习。机器学习正是这样一门学科,它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。1.2基本术语数据集dataset示例instance样本sample属性attribute特征feature属性值attributevalue属性空间attributespace样本空间s
- 【机器学习】集成学习基础概念介绍
Avasla
机器学习算法机器学习集成学习人工智能
前言本文根据西瓜书总结了一些关键知识点,介绍了集成学习的原理、类型以及结合策略。、1.个体与集成集成学习(ensemblelearning)通过构建的并结合多个学习器来完成学习任务,有时也被成为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。……通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能。个体
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默