- 周工作计划2019-03-25
MikeShine
很久没有写工作计划了。之前一个星期生了病,很难受。上个星期基本上什么都没有干。但是好的一点是,西瓜书基本都看完了。本周工作计划:机器学习分享活动(关于决策树的分享)回看一下西瓜书的东西,每一章把开头总结写一下。老师没有给具体的任务,留了再说吧。
- 机器学习(西瓜书)学习笔记导览
盛寒
机器学习西瓜书学习机器学习人工智能
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
- 机器学习LDA线性判别器代码实现
Longlongaaago
机器学习LDA线性判别分析代码实现
机器学习LDA线性判别器代码实现西瓜书P60线性判别器LDA代码实现:importnumpyasnpimportmatplotlib.pyplotaspltdefload_data(file_name):'''数据导入函数:paramfile_name:(string)训练数据位置:return:feature_data(mat)特征lable_data(mat)标签'''fr=open(file
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 2019-05-14《西瓜书》难啃
杨熊猫Yang
周志华老师的《西瓜书:机器学习》这周看完1~10章锻炼:太极云手、100手/组,3组虎刨功(简)、100个/组,2组
- 机器学习——集成学习
三三木木七
机器学习集成学习人工智能
参考:ysu老师课件+西瓜书+期末复习笔记1.集成学习的基本概念集成学习(ensemblelearing)通过构建并结合多个学习器来完成学习任务。有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。理解:集成学习是一种机器学习方法,其核心思想是将多个学习器(弱学习器)集成在一起,以达到比单个学习器更好的性能
- 西瓜书学习笔记——低维嵌入(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍低维嵌入(Low-DimensionalEmbedding)是一种降低高维数据维度的技术,目的是在保留数据特征的同时减少数据的复杂性。这种技术常用于可视化、特征学习、以及数据压缩等领域。低维嵌入的目标是将高维数据映射到一个低维空间,以便更好地理解和可视化数据。在kkk近邻学习中,随着数据维度的增加,样本之间的距离变得更加稀疏,导致KNN算法性能下降。这是因为在高维空
- 西瓜书学习笔记——核化线性降维(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
- 西瓜书学习笔记——k近邻学习(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍K最近邻(K-NearestNeighbors,KNN)是一种常用的监督学习算法,用于分类和回归任务。该算法基于一个简单的思想:如果一个样本在特征空间中的kkk个最近邻居中的大多数属于某个类别,那么该样本很可能属于这个类别。KNN算法不涉及模型的训练阶段,而是在预测时进行计算。以下是KNN算法的基本步骤:选择K值:首先,确定用于决策的邻居数量K。K的选择会影响算法的
- 西瓜书学习笔记——主成分分析(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习降维
文章目录算法介绍实验分析算法介绍主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术,用于在高维数据中发现最重要的特征或主成分。PCA的目标是通过线性变换将原始数据转换成一组新的特征,这些新特征被称为主成分,它们是原始特征的线性组合。对于一个正交属性空间(各个属性之间是线性无关的)中的样本点,存在以下两个性质的超平面可对所有样本点进行恰当的表达:最近重构性
- 朴素贝叶斯分类算法
三三木木七
#机器学习机器学习人工智能sklearn
本文介绍了朴素贝叶斯分类算法,标记后的话一般是自己简要总结的,是比较通俗易懂的,也就是必看的。参考:西瓜书,ysu老师课件【摘要】1.分类算法:分类算法的内容是根据给定特征,求出它所属类别。2.先验概率:就是根据以往的数据分析所得到的概率。后验概率:是得到信息之后重新加以修正得到的概率。3.贝叶斯决策:贝叶斯决策理论中,我们希望选择那个最小化总体期望损失的决策。决策损失的期望值通过对所有可能状态的
- 决策树的相关知识点
三三木木七
#机器学习决策树算法机器学习
参考:ysu老师课件+西瓜书1.决策树的基本概念【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。理解:它是一个树状结构,其中每个节点代表一个特征属性的判断,每个分支代表这个判断的结果,而每个叶节点(叶子)代表一种类别或回归值。关于决策树要掌握的概念:根节点(Roo
- 西瓜书学习笔记——层次聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。但实际上,每个簇都是一个集合
- 西瓜书学习笔记——密度聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍密度聚类是一种无监督学习的聚类方法,其目标是根据数据点的密度分布将它们分组成不同的簇。与传统的基于距离的聚类方法(如K均值)不同,密度聚类方法不需要预先指定簇的数量,而是通过发现数据点周围的密度高度来确定簇的形状和大小。我们基于DBSCAN算法来实现密度聚类。DBSCAN是基于一组邻域参数(ϵ,MinPts)(\epsilon,MinPts)(ϵ,MinPts)来刻
- 【机器学习·西瓜书学习笔记·线性模型】线性回归——最小二乘法(least square method)
慈善区一姐
机器学习学习线性回归
线性模型的基本形式给定由个属性描述的实例,其中是在第个属性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成:和确定后,模型就得以确定参数查阅表把数据集表示为一个m*(d+1)大小的矩阵,其中每行对应于一个实例,每行前d个元素对应于实例的d个属性值,最后一个元素恒置于1,即(一)均方误差(meansquarederror)基于欧几里得距
- 如何系统学习机器学习?
人邮异步社区
学习机器学习人工智能
要系统学习机器学习,首先需要掌握一些基础编程技能,如Python。其次,学习基础的数学概念,如线性代数、概率论和统计学。然后,选择一些优质的在线课程和教材进行深入学习。最后,通过实践项目来巩固所学知识。以下是一些推荐的书籍:《动手学机器学习》,"西瓜书"作者周志华力荐的机器学习入门书。本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器
- 西瓜书学习笔记——原型聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录k均值算法算法介绍实验分析学习向量量化(LVQ)算法介绍实验分析高斯混合聚类算法介绍实验分析总结k均值算法算法介绍给定样本集D={x1,x2,...,xm}D=\{x_1,x_2,...,x_m\}D={x1,x2,...,xm},k均值算法针对聚类算法所得簇划分C={C1,C2,...,Ck}\mathcal{C}=\{C_1,C_2,...,C_k\}C={C1,C2,...,Ck}最
- 大数据学习之路
金光闪闪耶
一、为什么要学习大数据?在我第一份实习的时候,忘记在什么场景下我leader突然说了一句:「干Java不就是增删改查嘛」,而恰好那时候知乎都是「干了3年Java,还是只会增删改查,迷茫」等问题,我听完leader那句话就心里一颤。因为这句话,我又一次的陷入迷茫,我不清楚自己是不是应该继续的Java,所以那段时间我干过爬虫,也撸了一阵子的西瓜书和统计学什么的。在知乎上所有相关的问题和答案我都看了,也
- 西瓜书学习笔记——Boosting(公式推导+举例应用)
Nie同学
机器学习学习笔记boosting
文章目录引言AdaBoost算法AdaBoost算法正确性说明AdaBoost算法如何解决权重更新问题?AdaBoost算法如何解决调整下一轮基学习器样本分布问题?AdaBoost算法总结实验分析引言Boosting是一种集成学习方法,旨在通过整合多个弱学习器来构建一个强学习器。其核心思想是迭代训练模型,关注之前被错误分类的样本,逐步提升整体性能。Boosting的代表算法包括AdaBoost、G
- 浙江大学《机器学习》笔记——神经网络(Neural Network)【上】
啵啵啵啵哲
机器学习笔记神经网络机器学习人工智能
写在前面·最近在学习《机器学习》.主要是看浙江大学胡浩基老师的网课,结合周志华老师的西瓜书来学.为了理清思路和推公式就敲了这样一个读书笔记.初次学习难免会有错漏,欢迎批评指正.这份笔记主要用途还是用来自己复习回顾.当然如果对大家有帮助那就更好了hhh·注:神经网络这部分的笔记大部分是基于浙大《机器学习》的逻辑进行整理的.第5章神经网络(NeuralNetwork)·神经网络的诞生是集体的智慧·近年
- 西瓜书读书笔记整理(十二) —— 第十二章 计算学习理论
smile-yan
机器学习西瓜书计算学习理论PAC
第十二章计算学习理论(上)12.1基础知识12.1.1什么是计算学习理论(computationallearningtheory)12.1.2什么是独立同分布(independentandidenticallydistributed,简称i.i.d.i.i.d.i.i.d.)以及独立同分布样本12.1.3泛化误差以及经验误差12.1.4相关数学定义表示12.1.5误差参数12.1.6映射与样本集是
- python自学(二)第二章 正则表达式|字符串匹配、函数和面向对象程序设计
BrilandLiu
pythonpython编程语言
为了能在开学后更好地融入实验室,本人计划用一个月的时间进行python3语言入门,该系列笔记适合已经有一门编程语言基础的朋友参考使用,欢迎同道者前来交流~使用教材:1.《python从入门到精通》清华大学出版社;(自带教学视频【二维码形式】)least17p/d2.《机器学习》周志华(西瓜书)清华大学出版社;least14p/d;3.BiliBili《和美女老师一起学python》视频。(一)正则
- 【机器学习】西瓜书要点个人整理
_hermit:
机器学习机器学习人工智能学习
目录前置基础知识第三章线性模型机器学习三要素1.函数集合2.目标函数3.优化方法4.模型评估方法对数几率回归(逻辑回归)第四章决策树第五章SVM第六章贝叶斯分类器第八章集成学习第九章神经网络前情提要:本文适合在学习机器学习课程前,对课程的要点进行简单预习。本文中提到的一些概念,大多是老师课上会重点讲的、考试要考的。此外,在进行复习时也可以通过这些概念引入,从而去更深入理解一些模型原理。前置基础知识
- 吃瓜教程Task1:概览西瓜书+南瓜书第1、2章
卡拉比丘流形
机器学习机器学习人工智能
由于本人之前已经学习过西瓜书,本次学习主要是对以往知识的查漏补缺,因此本博客记录了在学习西瓜书中容易混淆的点以及学习过程中的难点。更多学习内容可以参考下面的链接:南瓜书的地址:https://github.com/datawhalechina/pumpkin-book【视频链接】https://www.bilibili.com/video/BV1Mh411e7VU?p=1文章目录绪论如何对机器学习
- 西瓜书读书笔记整理(十) —— 第十章降维与度量学习
smile-yan
机器学习西瓜书
10.1k近邻学习10.1.1什么是kNN学习kNN算法(k-NearestNeighbors)是一种常用的分类和回归算法。它的基本思想是根据最近邻的样本来预测未知样本的标签或值。10.1.2kNN算法步骤kNN算法的步骤如下:计算未知样本与训练集中所有样本的距离(通常使用欧氏距离或其他距离度量方法)。选取与未知样本距离最近的k个样本。对于分类问题,根据这k个样本的标签进行投票或权重计算,确定未知
- 西瓜书第六章课后习题
lammmya
6.1试证明样本空间中任意点x到超平面(w,b)的距离为式(6.2)。画了个图在纸上进行了证明,感觉这样自会通俗易懂些。6.2试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。导入相应的包主体函数:设置参数,输出。数据特征可视化输出结果以及数据特征可视化最终结果如下图结果表明,使用线性核和高斯训练核的支持向量实际是一样的(两条线重合),且数量相同
- 机器学习西瓜书笔记1
糊了胡
机器学习机器学习笔记人工智能
第一章机器学习之绪论目录第一章机器学习之绪论一、引言二、基本术语三、假设空间四、归纳偏好五、发展历程一、引言机器学习就是致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。Mitchell给出了更形式化的定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。二、基本术语收集一组西瓜数据,(色泽=青
- 西瓜书读书笔记整理(九) —— 第九章 聚类
smile-yan
聚类支持向量机机器学习
第九章聚类9.1聚类算法概述9.1.1什么是聚类算法9.1.2聚类算法分类9.1.3聚类任务9.2性能度量(ClusterEvaluation)9.2.1外部指标(externalindex)9.2.2内部指数(internalindex)9.3距离度量(DistanceMeasures)9.3.1距离度量的性质9.3.2常见的几种距离的计算公式9.4原型聚类(prototype-basedclu
- 西瓜书*南瓜书*机器学习*周志华*第一章*学习小结
fyc300
笔记西瓜书机器学习机器学习人工智能自动驾驶
西瓜书*南瓜书*机器学习*周志华*第一章*学习小结第一章绪论1.1绪论通过一个关于瓜的故事引入了对于机器学习这门课的学习。机器学习正是这样一门学科,它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。1.2基本术语数据集dataset示例instance样本sample属性attribute特征feature属性值attributevalue属性空间attributespace样本空间s
- 【机器学习】集成学习基础概念介绍
Avasla
机器学习算法机器学习集成学习人工智能
前言本文根据西瓜书总结了一些关键知识点,介绍了集成学习的原理、类型以及结合策略。、1.个体与集成集成学习(ensemblelearning)通过构建的并结合多个学习器来完成学习任务,有时也被成为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。……通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能。个体
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1