- PyQt5控件大小获取
qq_29278863
anacondapythonpip
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Mark
- 手把手教你搭建自己的微信编辑器
@菜鸟进阶记@
开源开源
项目介绍Markdown文档自动渲染为微信图文,不再为微信文章排版而发愁!只要你会基本的Markdown语法,就能做出一篇样式简洁而又美观大方的微信图文。功能特性支持Markdown所有基础语法、数学公式提供对Mermaid图表的渲染和GFM警告块的支持丰富的代码块高亮主题,提升代码可读性允许自定义主题色和CSS样式,灵活定制展示效果提供多图上传功能,并可自定义配置图床便捷的文件导入、导出功能,提
- 从VGG到Transformer:深度神经网络层级演进对模型性能的深度解析与技术实践指南
燃灯工作室
Aitransformerdnn深度学习
一、技术原理(数学公式+示意图)1.层深与模型容量关系数学表达:根据UniversalApproximationTheorem,深度网络可表达复杂函数:f(x)=fL(fL−1(⋯f1(x)))f(x)=f_L(f_{L-1}(\cdotsf_1(x)))f(x)=fL(fL−1(⋯f1(x)))层数L增加时,函数空间指数级扩大梯度传播挑战:链式法则导致梯度消失/爆炸∂L∂W(1)=∏k=2L∂f
- MySQL核心技术原理之:内存与磁盘管理
AI天才研究院
编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介1.1引言1.2作者简介2.背景介绍2.1为什么需要存储管理?2.2MySQL存储管理概览3.基本概念术语说明3.1数据类型3.2数据模型4.核心算法原理和具体操作步骤以及数学公式讲解4.1BufferPool缓存管理4.1.1缓存的基本概念4.1.2BufferPool缓存介绍4.1.3BufferPool缓存的操作步骤4.1.4InnoDB的双页写入
- Markdown的使用
程序员小续
javascripthtml5
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Mark
- Markdown使用
随便的名字
前端
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Mark
- 开源库&文章收集
单线程的Daniel
java
QlExpress由阿里的电商业务规则、表达式(布尔组合)、特殊数学公式计算(高精度)、语法分析、脚本二次定制等强需求而设计的一门动态脚本引擎解析工具CompileFlowcompileflow是一个非常轻量、高性能、可集成、可扩展的流程引擎。compileflowProcess引擎是淘宝工作流TBBPM引擎之一,是专注于纯内存执行,无状态的流程引擎,通过将流程文件转换生成java代码编译执行,简
- c/c++蓝桥杯经典编程题100道(19)质因数分解
tamak
算法c语言数据结构c++蓝桥杯
汉诺塔问题->返回c/c++蓝桥杯经典编程题100道-目录目录汉诺塔问题一、题型解释二、例题问题描述三、C语言实现解法1:递归法(难度★)解法2:迭代法(难度★★★)四、C++实现解法1:递归法(使用STL容器记录步骤,难度★☆)解法2:面向对象封装(难度★★)五、总结对比表六、特殊方法与内置函数补充1.C语言中的结构体栈2.C++的std::vector3.汉诺塔数学公式一、题型解释汉诺塔(To
- Day40【AI思考】-补码减法运算过程中,两种边界情况 可能导致错误
一个一定要撑住的学习者
#AI深度思考学习方法算法
文章目录补码减法运算过程中,**两种边界情况**可能导致错误**一、补码减法的正确性范围**1.**前提条件**2.**正确性验证****二、补码减法失效的两种情况**1.**正溢出(上溢)**2.**负溢出(下溢)****三、溢出检测原理**1.**硬件判断规则**2.**数学公式验证****四、补码减法的终极结论****五、实际应用中的应对策略****总结**补码减法运算过程中,两种边界情况可
- torch.nn.CrossEntropyLoss()的一些小细节(原理和数学,softmax与dim,ignore_index,报错:0D or 1D target tensor expecte)
老肝犯
人工智能深度学习python机器学习神经网络
目录关于torch.nn.CrossEntropyLoss()数学原理关于熵数学公式pytorch中的torch.nn.CrossEntropyLoss()torch.nn.CrossEntropyLoss()交叉熵函数的使用类别索引代码示例结果关于ignore_index类别概率(独热编码属于此类)代码示例结果和数学公式之间的关系代码展示结果关于报错提示0Dor1Dtargettensorexp
- 数学与光学:光的传播和干涉的数学描述
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与光学:光的传播和干涉的数学描述》关键词:光学,数学模型,光传播,干涉,波动方程摘要:本文旨在深入探讨光学中光的传播和干涉现象的数学描述。我们将从基础概念出发,逐步引入光的传播路径分析、斯涅尔定律和光的衍射现象,再到干涉原理和数学模型,最后探讨特殊情况下的干涉现象及其应用。文章将结合数学公式和编程实例,提供清晰的逻辑推理和分析过程,以帮助读者更好地理解和掌握这些核心概念。目录大纲《数学与光学
- Nesterov加速梯度法 (NAG, Nesterov Accelerated Gradient) 算法详解及案例分析
闲人编程
python算法动量梯度前瞻NAG加速梯度法Nesterov
Nesterov加速梯度法(NAG,NesterovAcceleratedGradient)算法详解及案例分析目录Nesterov加速梯度法(NAG,NesterovAcceleratedGradient)算法详解及案例分析1.引言2.Nesterov加速梯度法(NAG)算法原理2.1基本概念2.2算法步骤2.3数学公式3.NAG的优势与局限性3.1优势3.2局限性4.案例分析4.1案例1:线性回
- Word数学公式字体大全:个性化你的数学公式
邴卉露Robust
Word数学公式字体大全:个性化你的数学公式数学字体.zip项目地址:https://gitcode.com/open-source-toolkit/dfd44项目介绍在学术写作和科学研究中,数学公式的呈现往往需要高度的精确性和美观性。然而,MicrosoftWord自带的数学公式字体选择有限,难以满足用户对个性化和高质量输出的需求。为了解决这一问题,我们推出了“Word数学公式字体大全”项目,提
- 如何处理大规模数据集中的数据处理:Spark和ApacheFlink
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明数据处理(DataProcessing)任务调度(TaskScheduling)HadoopApacheSparkApacheFlink3.核心算法原理和具体操作步骤以及数学公式讲解1.MapReduce(1)概述(2)算法原理分布式文件系统Map阶段Shuffle阶段Reduce阶段MapReduce的流程示意图Map阶段Shuffle阶段Reduce阶段执行
- 软件架构设计与模式之:服务导向架构与RESTful架构
AI天才研究院
AI大模型企业级应用开发实战架构师必知必会系列大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.基本概念术语说明2.1服务导向架构(Service-OrientedArchitecture,SOA)2.2RESTful架构2.3区别与联系2.4RESTfulAPI的几个原则3.核心算法原理和具体操作步骤以及数学公式讲解3.1服务注册与发现3.1.1服务注册3.1.2服务发现3.1.2.1主动探测3.1.2.2拉取模式3.1.3负载均衡算法3.1
- 基于python使用OpenCV和MediaPipe通过人体姿态检测实现对标准的仰卧起坐数量的计量(一)
Komorebi_777
视觉学习pythonopencv开发语言
项目中主要运用到的库1.OpenCV2.MediaPipe3.math4.Numpy项目总流程用户准备仰卧起坐的时候,可以打开摄像头对准自己(本报告为方便呈现,将导入外部有关仰卧起坐的视频体现监测过程,并截图体现效果)并运行程序,则可以实现实时监测仰卧起坐的状态,通过获取人体一侧(本项目中指定为左侧)的肩膀、腰部和脚的点位,得到三个坐标值,而后利用数学公式讲指定两点(即肩膀与腰部、脚与腰部)的连线
- There is insufficient memory for the Java Runtime Environment to continue
2401_86087710
java开发语言
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Mark
- 深入探索 Vue 3 Markdown 编辑器:高级功能与实现
╰つ゛木槿
vue3vue.js编辑器前端
目录1.为什么选择Markdown编辑器?2.选择合适的Markdown编辑器3.安装与基本配置安装配置Markdown编辑器代码说明4.高级功能实现4.1实时预览与双向绑定4.2插入图片和图像上传安装图像上传插件配置图像上传插件4.3数学公式支持安装KaTeX配置KaTeX插件4.4自定义工具栏4.5自定义主题与样式5.性能优化6.总结Markdown编辑器作为一种轻量级文本格式,已被广泛应用于
- HTML5 MathML用法详解
天涯学馆
大前端&移动端全栈架构html5前端html
目录MathML的基本结构MathML元素分类浏览器支持与渲染MathML与LaTeXMathML示例MathML是一种标记语言,用于在网页中表示数学公式和符号。它为数学、科学和技术出版物提供了标准化的、结构化的表示方式,使得复杂的数学表达式能够被浏览器准确解析和渲染。MathML的基本结构MathML文档由元素包裹,内部包含数学公式的所有组成部分。一个简单的MathML公式示例:
- Word转表单只需90秒?揭秘教育与企业培训的「自动化提效神器」
流形填表
word自动化运维
“为什么我总在深夜复制粘贴试题?”——一个教师的效率困局凌晨1点,王老师还在电脑前逐题复制Word试卷到MicrosoftForms。第27题粘贴后,选项突然错位,她崩溃地发现:✅**耗时陷阱**:30道题花费2小时,其中45分钟在调整格式。✅**格式诅咒**:从Word粘贴的数学公式变成乱码,位置全乱。✅**多语噩梦**:双语试题中的日文假名显示为“????”。这不是个例——调研显示,87%的教
- 为什么说软件架构师应该关心性能优化?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.基本概念术语说明2.1服务器架构2.2云计算3.核心算法原理和具体操作步骤以及数学公式讲解3.1概述3.2CPU3.2.1CPU缓存和页面置换算法3.2.2NUMA架构3.3内存3.3.1内存分配策略(1)如何划分内存给进程(2)如何划分内存给堆和栈(3)是否允许堆和栈向操作系统申请更多的内存3.3.2内存碎片3.4网络3.4.1网络协议优化(1)协
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析
闲人编程
控制与系统优化算法22讲算法蚂蚁觅食行为组合优化旅行商问题车辆路径问题ACO蚁群算法
蚁群算法(AntColonyOptimization)算法详解及案例分析目录蚁群算法(AntColonyOptimization)算法详解及案例分析1.引言2.蚁群算法(ACO)算法原理2.1蚂蚁觅食行为2.2算法步骤2.3数学公式3.蚁群算法的优势与局限性3.1优势3.2局限性4.案例分析4.1案例1:旅行商问题(TSP)4.1.1问题描述4.1.2代码实现4.1.3流程图4.1.4优化曲线4.
- 关于sklearn.svm.SVC与.NuSVC的区别以及参数介绍
_Magic
机器学习实战withpython
0.区别SVC与NuSVC是类似的方法,但是接受稍微不同的参数集合并具有不同的数学公式,并且NuSVC可以使用参数来控制支持向量的个数,以下代码默认的是多分类1.SVC#coding:utf-8fromsklearnimportsvmfromnumpyimport*X=array([[0],[1],[2],[3]])y=array([0,1,2,3])clf=svm.SVC()clf.fit(X,
- 交叉熵损失函数(Cross-Entropy Loss)
我叫罗泽南
深度学习人工智能
原理交叉熵损失函数是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵的数学公式交叉熵的定义如下:CrossEntroyLoss=−∑i=1Nyi⋅log(y^i)\begin{equation}CrossEntroyLoss=-\sum_{i=1}^{N}y_i\cdotlog(\hat{y}_i)\end{equati
- 蓝桥杯 连续奇数和问题解析
不玩return的马可乐
算法/题库蓝桥杯职场和发展leetcode算法数据结构c++
问题描述问题分析这个问题可以通过暴力搜索解决,即通过遍历所有可能的奇数序列,找到和等于111的立方的序列。然而,这种方法效率较低,我们需要寻找更优的解决方案。数学公式对于任意正整数n,其立方n3可以表示为n个连续奇数的和。起始奇数可以通过公式计算得出:a=n2−n+1这个公式直接给出了连续奇数和的起始数字。代码实现暴力搜索方法首先,我们尝试使用暴力搜索方法来解决这个问题:#includeusing
- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- T检验:一种通俗易懂的统计分析方法
从零开始学习人工智能
算法人工智能机器学习
摘要T检验(T-test或Student'sT-test)是统计学中用于比较两组数据均值是否存在显著差异的重要工具。本文旨在以通俗易懂的方式介绍T检验的基本概念、类型、数学公式、应用步骤及其在各个领域中的实际应用。引言在科学研究、数据分析等领域,我们经常需要评估两组数据之间的差异是否具有统计学意义。T检验正是为此目的而设计的,它基于T分布理论,通过计算样本数据的T值和P值来推断总体均数之间的差异。
- 【机器学习:十六、其他的激活函数】
KeyPan
机器学习机器学习人工智能算法服务器运维ubuntu
1.Sigmoid激活函数的替代方案Sigmoid激活函数在神经网络中曾广泛使用,其数学公式为:σ(x)=11+e−x\sigma(x)=\frac{1}{1+e^{-x}}σ(x)=1+e−x1输出范围为(0,1),适合二分类问题。但随着深度学习的发展,Sigmoid函数逐渐被替代,主要原因包括:梯度消失问题:当输入绝对值较大时,梯度趋近于零,导致权重更新困难。非零中心问题:输出值始终为正,可能
- 七.正则化
愿风去了
吴恩达机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net/b876144622/article/details/81276818虽然在线性回归中加入基函数会使模型更加灵活,但是很容易引起数据的过拟合。例如将数据投影到30维的基函数上,模
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin