读研找工作都离不开,如今已到春招,决定最近开个解析leetcode高频经典题的坑
近年来leetcode题库暴增,算法题已经达到961题,全部刷完对于一般人来说既不现实,效率也不高
看到网上又大神贴出的经典高频题,现将题目序号附上,再慢慢填坑解析,也算做个总结
取自Lnho大神总结的高频题,原文:https://blog.csdn.net/lnho2015/article/details/50962989
刷题顺序:
出现频度为5:
出现频度为4:
https://leetcode.com/problems/two-sum/
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
for i in nums:
if target - i in nums:
return [nums.index(i), nums.index(target - i)]
https://leetcode.com/problems/3sum/
很好很经典的一个题目,同样有很多变种
3SumClosest https://leetcode.com/problems/3sum-closest/
4Sum https://leetcode.com/problems/4sum/
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
""" lenth = len(nums) nums.sort() Sum = [] path = {} for i in range(lenth): for j in range(i+1, lenth): a = -(nums[i] + nums[j]) if a in nums: temp = sorted([nums[i] , nums[j], a]) if temp not in Sum: Sum.append(temp) return Sum """
# 用到了动态规划,节省了时间
if len(nums) <3: # deal with special input
return []
elif len(nums) == 3:
if sum(nums) == 0:
return [sorted(nums)]
nums = sorted(nums) # sorted, O(nlgn)
ans = []
for i in range(len(nums) -2):
j = i+1
k = len(nums) -1 # hence i < j < k
while j<k: # if not cross line
temp_sum = nums[i] + nums[j] + nums[k]
if temp_sum == 0:
ans.append((nums[i], nums[j], nums[k]))
if temp_sum > 0: # which means we need smaller sum, move k backward, remember we sort the array
k -= 1
else:
j += 1
return list(set(tuple(ans))) # I bet this is not the best way to eliminate duplicate solutions
class Solution:
def isValid(self, s: str) -> bool:
if s == "":
return True
left = ['(', '{', '[']
right = {')':'(', '}':'{', ']':'['}
stack = []
for i in s:
if i in left:
stack.append(i)
else:
if stack == [] or right[i] != stack.pop():
return False
if stack == []:
return True
else:
return False
[https://leetcode.com/problems/merge-intervals/]
Given a collection of intervals, merge all overlapping intervals.
Input: [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlaps, merge them into [1,6].
先用sorted函数对list按照start值来进行排序,用res保存输出结果,对于list中每个元素,比较i.start与res[-1].end的大小,如果小于等于就说明有重叠,将res[-1].end更行为i.end与自身的最大值。若大于这说明没有重叠,res加入i。
# Definition for an interval.
# class Interval:
# def __init__(self, s=0, e=0):
# self.start = s
# self.end = e
# 学会使用lambda,给元素先进行排序
class Solution:
def merge(self, intervals: List[Interval]) -> List[Interval]:
if len(intervals) == 0: return []
intervals = sorted(intervals, key = lambda x: x.start)
res = [intervals[0]]
for i in intervals[1:]:
# 如果i的起点小于res[-1]的终点,res[-1]的终点取i终点和自身的最大值
if i.start <= res[-1].end :
res[-1].end = max(res[-1].end, i.end)
else:
res.append(i)
return res
https://leetcode.com/problems/insert-interval/
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
上一题的升级版,只是要先判断一下新区间该插入哪,然后再判断是否overlap。只要加入这一段代码即可
if intervals == []:
return [newInterval]
#if the newInterval.end less than the first ele.start of intervals
intervals.append(newInterval)
intervals = sorted(intervals, key = lambda x: x.start)
res = [intervals[0]]
https://leetcode.com/problems/set-matrix-zeroes/
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in-place.
Example 1: Input:
[
[1,1,1],
[1,0,1],
[1,1,1] ]
Output:
[
[1,0,1],
[0,0,0],
[1,0,1] ]
题目要求使用in-place,因此不能创建一个新的矩阵来替换原先矩阵。创建两个列表来保存出现0的位置的坐标,
然后对于rows和cols中的序号,对对应的行和列进行置零处理。
class Solution:
# an in-place algorithm is an algorithm which transforms input using no auxiliary data structure.
However a small amount of extra storage space is allowed for auxiliary variables.
# 原地算法不依赖额外的资源或者依赖少数的额外资源,仅依靠输出来覆盖输入的一种算法操作
def setZeroes(self, matrix: List[List[int]]) -> None:
""" Do not return anything, modify matrix in-place instead. """
rows = []
cols = []
for i in range(len(matrix)):
for j in range(len(matrix[0])):
if matrix[i][j] == 0:
rows += [i]
cols += [j]
for i in rows:
matrix[i] = [0] * (len(matrix[0]))
for j in cols:
for i in range(len(matrix)):
matrix[i][j] = 0
https://leetcode.com/problems/validate-binary-search-tree/
判断一个树是不是二叉搜索树,特征就是中序遍历得到的数列一定是递增的。很简单
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
if root == None:
return True
# 中序遍历 二叉搜索树
tree = []
self.inOrder(root, tree)
if len(tree) == 1:
return True
for i in range(len(tree)-1):
if tree[i] >= tree[i+1]:
return False
return True
def inOrder(self, root, tree):
if root == None:
return
if root.left:
self.inOrder(root.left, tree)
tree.append(root.val)
if root.right:
self.inOrder(root.right, tree)
https://leetcode.com/problems/valid-palindrome/
很简单,只是要用到 ele.,isalnum() 函数,ele是数字或者字母就返回1
class Solution:
def isPalindrome(self, s: str) -> bool:
if s == "":
return True
pali = []
for i in s:
if i.isalnum():
pali.append(i.lower())
if pali == pali[::-1]:
return True
else:
return False
https://leetcode.com/problems/word-ladder/
Given two words (beginWord and endWord), and a dictionary’s word list, find the length of shortest transformation sequence from beginWord to endWord
Input:
beginWord = “hit”,
endWord = “cog”,
wordList = [“hot”,“dot”,“dog”,“lot”,“log”,“cog”]
Output: 5
Explanation: As one shortest transformation is “hit” -> “hot” -> “dot” -> “dog” -> “cog”,
return its length 5.
https://leetcode.com/problems/generate-parentheses/
For example, given n = 3, a solution set is:
[
“((()))”,
“(()())”,
“(())()”,
“()(())”,
“()()()”
]
这种方法是我自己想出来的,代码略多。也是一种深度优先的策略。
将 left,right,path,res参数传入formParen函数,path是当前已经形成的字符串,在每一层函数中被加工以后穿入下一层,同时把res一层层传下去,直到要添加的括号数量满足的时候(if left == 0 and right == 0 或者 left == 0),把当前已经形成的path传入res。
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
""" :type n: int :rtype: List[str] """
res = []
left = n
right = n
path = ''
self.formParen(left,right,path,res)
return res
def formParen(self,left,right,path,res): #left right表示剩余要加入的左右括号
if left == 0 and right == 0:
res.append(path)
elif left == 0:
res.append(path+')'*right)
elif right == left: #表示已添加的左右括号数量相同,只能加左括号了
self.formParen(left-1,right,path+'(',res)
else:
self.formParen(left-1,right,path+'(',res)
self.formParen(left,right-1,path+')',res)
贴个短的
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
return self.dfs(n, n, "", [])
def dfs(self, l, r, s, res):
if l:
self.dfs(l-1, r, s + "(", res)
if r and l < r: # l < r is important.
self.dfs(l, r-1, s + ")", res)
if not r:
res.append(s)
return res
https://leetcode.com/problems/merge-k-sorted-lists/
没什么好说的,就是给几个排好序的列表Lists,用分治解决:将所有序列先两两合并,再把这些序列再两两合并……直到只剩一个序列。其他的和合并列表操作一样。
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def mergeKLists(self, lists: List[ListNode]) -> ListNode:
# 用分治的思想,在第一层循环内,嵌套一个循环,这个循环把链表按照两个链表合并的思想 来合并
if not lists:
return None
sentinel = ListNode(0) #as the head node
while len(lists) > 1:
mergeList = []
while len(lists) > 1:
mergeList.append(self.mergeTwo(lists.pop(), lists.pop(),sentinel))
lists += mergeList
return lists[0]
def mergeTwo(self, list1, list2, head):
cur = head
while list1 and list2:
if list1.val < list2.val:
cur.next = list1
list1 = list1.next
else:
cur.next = list2
list2 = list2.next
cur = cur.next
cur.next = list1 if list1 else list2
return head.next
https://leetcode.com/problems/swap-nodes-in-pairs/
主要是指针的问题要搞清楚,就没问题了。
[0 -> 1 -> 2 - > 3 -> 4],if we want to swap 1 and 2,cur to 1, cur.next to 2, cur.next.next to 3, firstly, set “temp” to 3, namely ‘temp = cur.next.next’, then the’ cur.next.next = cur’, if the cur have a father node, we should make it point to the cur.next, finally, the cur.next to the temp, namely 1 -> 3, 1.next point to which the temp point to.
用英文打不用不停切换输入 : ) haa
temp = cur.next.next
if father:
father.next = cur.next
cur.next.next = cur
cur.next = temp
father = cur
cur = cur.next
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def swapPairs(self, head: ListNode) -> ListNode:
if not head:
return None
if head.next == None:
return head
father = None
cur = head
newHead = head.next
#从第三个开始,要代入父节点否则会有指针内容丢失
while cur and cur.next: # 0->(0 is the father)1->2->3 temp->3 2->1 1->(temp->)3
temp = cur.next.next
if father:
father.next = cur.next
cur.next.next = cur
cur.next = temp
father = cur
cur = cur.next
return newHead
https://leetcode.com/problems/permutations/
Input: [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
mege(befor, after):
new = before + after
output = []
for i in range(len(new)):
for j in self.merge(new[:i], new[i+1:]):
output.append([new[i]] + j)
拿1举例子, 第一次生成了[ [1] ],然后生成两位[ [1, 2] , [1, 3] ],然后生成三位,分治思想,用递归来解决。
从上一轮中得到的除去了一个字符的新序列组成 new 序列。第一个循环,分别取出new里面的一个字符,然后第二个循环中,挨个把剩余的元素加入这个new[i]。
公式是 f(n) = f(1) + f(n-1),f表示取出x个元素进行排列的可能结果,边界条件是当传下来的new只有一个元素的时候,返回[new],表示只有一种情况。
# 2019/3/19 实现了分治思想 divide and conquer!
#
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
res = self.merge([], nums)
return res
def merge(self, before, after):
new = before + after
if len(new) == None:
return []
if len(new) == 1:
return [new]
output = []
for i in range(len(new)):
for j in self.merge(new[:i], new[i+1:]):
output.append([new[i]] + j)
return output
Input: [“eat”, “tea”, “tan”, “ate”, “nat”, “bat”],
Output:
[
[“ate”,“eat”,“tea”],
[“nat”,“tan”],
[“bat”]
]
整个拥有相同字母的单词,这里面涉及一个知识点,dic的键值不可以是list,但是可以是tuple,此外,string可以使用sorted方法进行排序,得到一个list。
class Solution:
def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
mydic = {}
res = []
for item in strs:
# 字典索引不能为list但是可以是tuple
item_ele = tuple(sorted(item))
if item_ele not in mydic:
mydic[item_ele] = [item]
else:
mydic[item_ele].append(item)
for key in mydic:
res.append(mydic[key])
return res
Leet Code OJ 67. Add Binary
Leet Code OJ 69. Sqrt(x)
https://leetcode.com/problems/combinations/
permutation的升级版,能通过k控制组合的数字数目
Input: n = 4, k = 2
Output:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
class Solution:
# 和Permutations有点像.
'''def combine(self, n: int, k: int) -> List[List[int]]: res = [] path = [] self.dfs(list(range(1, n+1)), k, 0, path, res) return res def dfs(self, nums, k, index, path, res): if k == 0: res.append(path) return #回溯。 for i in nums: # 每次index加一,表示可用的数字减少一个,按照从头到尾的顺序减少。k控制最后生成的序列元素长度,每次path增加一个元素 self.dfs(nums[index+1:], k-1, i+1, path+[i], res)'''
def combine(self, n, k):
res = []
self.dfs(range(1,n+1), k, 0, [], res)
return res
def dfs(self, nums, k, index, path, res):
#if k < 0: #backtracking
#return
if k == 0:
res.append(path)
return # backtracking
for i in range(index, len(nums)):
self.dfs(nums, k-1, i+1, path+[nums[i]], res)
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
可以动态更新result的值,如果用for循环就会报错,因为在for循环里的变量不能变更
for i in result: result += i + [num]
(错误)
result += [i + [num] for i in result]
(正确)
class Solution:
def subsets(self, nums):
nums.sort()
result = [[]]
for num in nums:
result += [i + [num] for i in result]
return result
第一种动态规划的方法,无奈时间复杂度太高,被毙了
#不用开dic,'123' 直接拆分成几个组合比如[1,2,3][12,3][1,23],元素只有两位且介于1~26
if s == '' or s[0] == '0':
return 0 #能分出单个'0'的那一种情况直接去掉
if len(s) == 1:
return 1
if len(s) == 2:
if s[1] == '0':
if s == '10' or s == '20':
return 1
else:
return 0
elif s[0] == '0' or int(s) > 26 :
return 1
else:
return 2
num = self.judge(s[0]) * self.numDecodings(s[1:]) + self.judge(s[0:2]) * self.numDecodings(s[2:])
return num
def judge(self, s):
if s[0] == '0' or int(s) > 26:
return 0
elif s == '10' or s == '20':
return 1
else:
return 1
'''
class Solution:
def numDecodings(self, s: str) -> int
# 不用递归 可以把字符串从第一位看起,当做每次加入一个新的字符,然后看增加了多少种可能性(0种或一种),比如123,先看1,然后看12,在看12加入3 以后,多了一种23 和2 3 的可能
if s[0] == '0':
return 0
if len(s) == 1:
return 1
dp = [0] * len(s)
dp[0] = 1
if s[1] == '0':
if s[0] > '2':
return 0
else:
dp[1] = 1
else:
if s[0:2] >= '11' and s[0:2] <= '26':
dp[1] = 2
else:
dp[1] = 1
for i in range(2, len(s)):
if s[i-1] > '2' and s[i] == '0':
return 0
if s[i] >= '1' and s[i] <= '9':
dp[i] = dp[i-1]
if s[i-1:i+1] >='10' and s[i-1:i+1] <= '26':
dp[i] += dp[i-2]
return dp[-1]
层序遍历而已
又是层序遍历
又是回溯法。
class Solution:
def partition(self, s):
res = []
self.dfs(s, [], res)
return res
def dfs(self, s, path, res):
if not s:
res.append(path)
return
for i in range(1, len(s)+1):
if self.isPal(s[:i]):
self.dfs(s[i:], path+[s[:i]], res)
def isPal(self, s):
return s == s[::-1]