似然函数以及最大似然估计

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。

在这种意义上,似然函数可以理解为条件概率的逆反。在已知某个参数B时,事件A会发生的概率写作:

利用贝叶斯定理,

因此,我们可以反过来构造表示似然性的方法:已知有事件A发生,运用似然函数{\displaystyle \mathbb {L} (B\mid A)},我们估计参数B的可能性。形式上,似然函数也是一种条件概率函数,但我们关注的变量改变了:

注意到这里并不要求似然函数满足归一性:。一个似然函数乘以一个正的常数之后仍然是似然函数。对所有},都可以有似然函数:

上述为Wikipedia上的解释,下面举个例子来阐释一下:


例子1:抽球

举个通俗的例子:假设一个袋子装有白球与红球,比例未知,现在抽取10次(每次抽完都放回,保证事件独立性),假设抽到了7次白球和3次红球,在此数据样本条件下,可以采用最大似然估计法求解袋子中白球的比例(最大似然估计是一种“模型已定,参数未知”的方法)。当然,这种数据情况下很明显,白球的比例是70%,但如何通过理论的方法得到这个答案呢?一些复杂的条件下,是很难通过直观的方式获得答案的,这时候理论分析就尤为重要了,这也是学者们为何要提出最大似然估计的原因。我们可以定义从袋子中抽取白球和红球的概率如下:


x1为第一次采样,x2为第二次采样,f为模型, theta为模型参数

其中theta是未知的,因此,我们定义似然L为:


L为似然的符号

两边取ln,取ln是为了将右边的乘号变为加号,方便求导。


两边取ln的结果,左边的通常称之为对数似然。

这是平均对数似然

最大似然估计的过程,就是找一个合适的theta,使得平均对数似然的值为最大。因此,可以得到以下公式:


最大似然估计的公式

这里讨论的是2次采样的情况,当然也可以拓展到多次采样的情况:


最大似然估计的公式(n次采样)

我们定义M为模型(也就是之前公式中的f),表示抽到白球的概率为theta,而抽到红球的概率为(1-theta),因此10次抽取抽到白球7次的概率可以表示为:


10次抽取抽到白球7次的概率

将其描述为平均似然可得:


10次抽取抽到白球7次的平均对数似然,抽球的情况比较简单,可以直接用平均似然来求解

那么最大似然就是找到一个合适的theta,获得最大的平均似然。因此我们可以对平均似然的公式对theta求导,并另导数为0。

求导过程

由此可得,当抽取白球的概率为0.7时,最可能产生10次抽取抽到白球7次的事件。




你可能感兴趣的:(统计函数)