【算法编程】矩阵打印、旋转和查找

一、转圈打印

1、题目描述

给定一个整型矩阵 matrix,请按照转圈的方式打印它。

例如:

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] \left[ \begin{matrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{matrix} \right] 15913261014371115481216

打印结果为:1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10

要求:额外空间复杂度为O(1)

2、图解

【算法编程】矩阵打印、旋转和查找_第1张图片

3、Java代码

package day02;

public class Code07_PrintMatrixSpiralOrder {

	public static void printMatrix(int[][] matrix) {
		int leftL = 0;  //左行
		int leftC = 0;  //左列
		int rightL = matrix.length - 1;  //右行
		int rightC = matrix[0].length - 1;  //右列
		
		while(leftL <= rightL && leftC <= rightC) {
			printEdge(matrix, leftL++, leftC++, rightL--, rightC--);
		}
	}

	public static void printEdge(int[][] m, int lL, int lC, int rL, int rC) {
		if(lL == rL) {  //边界情况一
			for(int i = lC; i <= rC; i++) {
				System.out.print(m[lL][i] + " ");
			}
		}else if(lC == rC) {  //边界情况二
			for(int i = lL; i <= rL; i++) {
				System.out.print(m[i][lC] + " ");
			}
		}else {  //转圈
			int curlL = lL;
			int curlC = lC;
			while(curlC != rC) {
				System.out.print(m[lL][curlC] + " ");
				curlC++;
			}
			while(curlL != rL) {
				System.out.print(m[curlL][rC] + " ");
				curlL++;
			}
			while(curlC != lC) {
				System.out.print(m[rL][curlC] + " ");
				curlC--;
			}
			while(curlL != lL) {
				System.out.print(m[curlL][lC] + " ");
				curlL--;
			}
		}
	}
	public static void main(String[] args) {
		int[][] matrix = { { 1,  2,  3,  4 }, 
						   { 5,  6,  7,  8 }, 
						   { 9,  10, 11, 12 },
						   { 13, 14, 15, 16 } };
		printMatrix(matrix);
	}
}

二、旋转正方形矩阵

1、题目描述

给定一个整型正方形矩阵matrix,请把该矩阵调整成顺时针旋转90度的样子

例如:

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] \left[ \begin{matrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{matrix} \right] 15913261014371115481216

结果为:

[ 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4 ] \left[ \begin{matrix} 13 & 9 &5 &1 \\ 14 &10 &6 &2 \\ 15 &11 &7 &3 \\ 16 &12& 8 &4 \end{matrix} \right] 13141516910111256781234

要求:额外空间复杂度为O(1)

2、图解

【算法编程】矩阵打印、旋转和查找_第2张图片

3、Java代码

package day02;

public class Code08_RotateMatrix {
	public static void rotate(int[][] matrix) {
		int leftL = 0;
		int leftC = 0;
		int rightL = matrix.length - 1;
		int rightC = matrix[0].length - 1;
		while (leftL < rightL) {
			rotateEdge(matrix, leftL++, leftC++, rightL--, rightC--);
		}
	}

	public static void rotateEdge(int[][] m, int lL, int lC, int rL, int rC) {
		int times = rC - lC;  //每圈需要交换几次
		int tmp = 0;
		for (int i = 0; i != times; i++) {  //每次交换4个点
			tmp = m[lL][lC + i];
			m[lL][lC + i] = m[rL - i][lC];
			m[rL - i][lC] = m[rL][rC - i];
			m[rL][rC - i] = m[lL + i][rC];
			m[lL + i][rC] = tmp;
		}
	}

	public static void printMatrix(int[][] matrix) {
		for (int i = 0; i != matrix.length; i++) {
			for (int j = 0; j != matrix[0].length; j++) {
				System.out.print(matrix[i][j] + " ");
			}
			System.out.println();
		}
	}

	public static void main(String[] args) {
		int[][] matrix = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 },
				{ 13, 14, 15, 16 } };
		printMatrix(matrix);
		rotate(matrix);
		System.out.println("=========");
		printMatrix(matrix);

	}
}

三、“之”字型打印

1、题目描述

给定一个矩阵matrix,按照“之”字形的方式打印这个矩阵

例如:
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] \left[ \begin{matrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{matrix} \right] 15913261014371115481216

结果为:1 2 5 9 6 3 4 7 10 13 14 11 8 12 15 16

要求:额外空间复杂度为O(1)

2、图解

【算法编程】矩阵打印、旋转和查找_第3张图片

3、Java代码

package day02;

public class Code09_ZiPrintMatrix {
	public static void ziPrintMatrix(int[][] matrix) {
		int aL = 0;
		int aC = 0;
		int bL = 0;
		int bC = 0;
		int endL = matrix.length - 1;
		int endC = matrix[0].length - 1;
		boolean fromUp = false;
		while(aL != endL + 1) {
			printElement(matrix, aL, aC, bL, bC, fromUp);
			//下面两行不能换,换了就更新了aC,下面在判断aC == endC就不是原先的了
			aL = aC == endC ? aL + 1 : aL;  //a到头,行+1,否则行不变
			aC = aC == endC ? aC : aC + 1;  //a到头,列不变,否则列+1
			//下面两行同样
			bC = bL == endL ? bC + 1 : bC;  //b到头,列+1,否则列不变
			bL = bL == endL ? bL : bL + 1;  //b到头,行不变,否则行+1
			fromUp = !fromUp;  //方向改变
		}
		System.out.println();
	}

	public static void printElement(int[][] m, int aX, int aY, int bX, int bY, boolean f) {
		if(f) {
			while(aX != bX + 1) {
				System.out.print(m[aX++][aY--] + " ");
			}
		}else {
			while(bX != aX - 1) {
				System.out.print(m[bX--][bY++] + " ");
			}
		}
	}
	
	public static void main(String[] args) {
		int[][] matrix = { { 1,  2,  3,  4,  5,  6 }, 
						   { 7,  8,  9,  10, 11, 12 },
						   { 13, 14, 15, 16, 17, 18 } };
		
		ziPrintMatrix(matrix);
	}
}

四、在行列都排好序的矩阵中找数

1、题目描述

给定一个有 N*M 的整型矩阵 matrix 和一个整数 Kmatrix 的每一行和每一 列都是排好序的。实现一个函数,判断 K是否在 matrix 中。

例如:

[ 0 1 2 5 2 3 4 7 4 4 4 8 5 7 7 9 ] \left[ \begin{matrix} 0 & 1 & 2 & 5 \\ 2 & 3 & 4 & 7 \\ 4 & 4 & 4 & 8 \\ 5 & 7& 7& 9 \end{matrix} \right] 0245134724475789

如果 K 为7,返回 true ;如果 K6,返回 false

要求:时间复杂度为O(N+M),额外空间复杂度为O(1)

2、图解

【算法编程】矩阵打印、旋转和查找_第4张图片

待查找的数大于当前数,向下搜索;小于当前数,向左搜索;等于即找到了
到边界表示没找到

3、Java代码

package day02;

public class Code10_FindNumInMatrix {
	public static boolean isContains(int[][] matrix, int k) {
		int row = 0;
		int col = matrix[0].length - 1;
		while(row < matrix.length && col > -1) {
			if(matrix[row][col] == k) {
				return true;
			}else if(matrix[row][col] > k) {
				col--;
			}else{
				row++;
			}
		}
		return false;
	}
	
	public static void main(String[] args) {
		int[][] matrix = new int[][] { 
			    { 0,   1,   2,   3,   4,   5,   6 },
				{ 10,  12,  13,  15,  16,  17,  18 },
				{ 23,  24,  25,  26,  27,  28,  29 },
				{ 44,  45,  46,  47,  48,  49,  50 },
				{ 65,  66,  67,  68,  69,  70,  71 },
				{ 96,  97,  98,  99,  100, 111, 122 },
				{ 166, 176, 186, 187, 190, 195, 200 },
				{ 233, 243, 321, 341, 356, 370, 380 } 
		};
		System.out.println(isContains(matrix, 233));
		System.out.println(isContains(matrix, 113));
	}
}

你可能感兴趣的:(算法编程,算法编程)