遗传算法解决车辆路径问题

车辆路径问题

车辆路线问题(VRP)最早是由Dantzig和Ramser于1959年首次提出,它是指一定数量的客户,各自有不同数量的货物需求,配送中心向客户提供货物,由一个车队负责分送货物,组织适当的行车路线,目标是使得客户的需求得到满足,并能在一定的约束下,达到诸如路程最短、成本最小、耗费时间最少等目的。

关于设有一场站(depot),共有M 辆货车,车辆容量为Q,有N位顾客(customer),每位顾客有其需求量D。车辆从场站出发对客户进行配送服务最后返回场站,要求所有顾客都被配送,每位顾客一次配送完成,且不能违反车辆容量的限制,目的是所有车辆路线的总距离最小。车辆路线的实际问题包括配送中心配送、公共汽车路线制定、信件和报纸投递、航空和铁路时间表安排、工业废品收集等。

车辆路线问题之学术研究文献众多,也提出了相当多的求解策略与方法,Bodin and Golden(1981)将众多之求解方法归纳成以下七种:


数学解析法(Exact Procedure)

人机互动法(Interactive);

先分群再排路线(Cluster First–Route Second);

先排路线再分群(Route First–Cluster Second);

节省法或插入法(Saving or Insertion);
     改善或交换法(Improvement or Exchanges);

      数学规划近似法(Mathematical programming)。 

遗传算法介绍

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:
① 首先组成一组候选解
② 依据某些适应性条件测算这些候选解的适应度
③ 根据适应度保留某些候选解,放弃其他候选解
④ 对保留的候选解进行某些操作,生成新的候选解。
在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点:
(1)遗传算法从问题解的串集开始搜索,而不是从单个解开始。这是遗传算法与传统化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。
(2)遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。
(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,适应度大的个体具有较高的生存概率,并获得更适应环境的基因结构。
(6)此外,算法本身也可以采用动态自适应技术,在进化过程中自动调整算法控制参数和编码精度,比如使用模糊自适应法。


主要源码1:种群初始化            构造函数,初始化种群,将适应度,选择概率,期望概率,是否被选择均置为0,利用随机函数为每个基因分配一个城市序列。最后调用initdistance函数将34个城市之间的距离初始化。

               2.计算每个种群每个基因个体的适应度,选择概率,期望概率,和是否被选择。 

               3.填充函数

                 4 . 交叉函数

                5.变异

                 6 判断是否结束

                 7.计算程序执行时间

你可能感兴趣的:(基础知识的积累-浅尝辄止,MATLAB学习笔记)