- 【文献阅读笔记】去噪学生网络:DeSTSeg
迎着黎明那道光
文献阅读笔记视觉异常检测笔记异常检测视觉检测深度学习
2023CVPR领域:异常检测目标:图像输入数据文章目录1、模型2、方法3、实验4、引用5、想法1、模型模型分为三个模块,包括教师网络、去噪学生网络和分割网络。分为两个阶段进行训练,第一阶段训练去噪学生网络,第二阶段训练分割网络。2、方法去噪学生网络,主要解决的是异常过度泛化的问题,利用编码器-解码器架构实现去噪。在第一个阶段将合成异常图像输入,训练去噪学生网络输出无异常图像。使用合成异常图像的目
- 【文献阅读笔记】无监督异常检测遇到噪声数据:STKD
迎着黎明那道光
文献阅读笔记视觉异常检测笔记异常检测视觉检测深度学习
2022ICIP领域:异常检测目标:图像输入数据文章目录1、什么是噪声数据2、解决的措施3、模型4、方法5、消融实验6、引用7、想法1、什么是噪声数据在无监督异常检测设置中,用于训练的数据均是正常图片,但由于缺陷可能是细微的,因种种原因可能无法保障用于训练的数据集内均是正常图像,有可能混有异常图像。如果仍然按照原有的假设进行异常检测,将会影响检测性能。2、解决的措施通过迭代执行异常检测步骤和训练步
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 第二十七周:文献阅读笔记
@默然
笔记
第二十七周:文献阅读笔记摘要AbstractDenseNet网络1.文献摘要2.引言3.ResNets4.DenseBlock5.Poolinglayers6.ImplementationDetails7.Experiments8.FeatureReuse9.代码实现总结摘要DenseNet(密集连接网络)是一种深度学习神经网络架构,由KaimingHe等人在2017年提出。相较于传统的卷积神经网
- 第二十九周:文献阅读笔记(DenseNet)+ pytorch学习
@默然
笔记pytorch学习
第二十九周:文献阅读笔记(DenseNet)+pytorch学习摘要Abstract1、DenseNet文献阅读1.1文献摘要1.2文献引言1.3DenseNets网络1.3.1残差网络1.3.2密集连接1.3.3实施细节1.4实验1.4.1数据集1.4.1.1CIFAR1.4.1.2SVHN1.4.2模型训练1.4.3CIFAR和SVHN的分类结果1.4.4ImageNet上的分类结果1.5总结
- 跨文化能力研究的深化与西方范式面临的质疑
叶小静Stamy
2019-03-083月文献阅读笔记07-《跨文化能力研究》时间:1990-1999机构成立:①国际跨文化研究院1997②国际语言与跨文化交际学会1999③中国跨文化交际学会1995研究主题:文化价值观、文化适应、跨文化能力、跨文化关系、文化认同、权力的不平等中国的主要研究成果:①林大津:跨文化能力包括得体、有效性和正当(属于道德范畴)②贾玉新:跨文化能力由基本的交际能力系统、情感和关系能力系统、
- 儒家视角的跨文化能力理论
叶小静Stamy
2019-03-233月文献阅读笔记19-《跨文化能力研究》【研究者】X.S.Xiao&G.M.Chen【观点】西方文化以自我为中心,在评价交际能力时强调对过程的控制以及预定目标的实现。然而,这种视角并不适合以人际关系为中心的中国儒家文化。在儒家文化看来,一个人的交际能力并不在于能都控制交流过程与实现个人目标,而在于能否以德行感化他人,不断提升自我人格。
- 微生物群落 文献阅读笔记
芜穀杂粱
PatternsandProcessesofMicrobialCommunityAssembly壹微生物群落组装过程的统一理论一、群落理论的框架1.Diversification2.Selection3.Dispersal4.Drift二、微生物群落组装的需要什么样的理论?1.和一般群落理论一致2.同时注重微生物特有的特性Aunifiedconceptualframeworkofmicrobial
- 自动驾驶感知-预测-决策-规划-控制学习(3):感知方向文献阅读笔记
棉花糖永远滴神
自动驾驶学习笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、文章主题二、摘要阅读1.名词理解①点云是什么?②二维图像分割器③轻量化卷积网络提取特征④单模态表达和多模态特征融合的区别⑤基于ROS的多传感器融合感知⑥TensorRT工具2.总结摘要三、绪论解析1.首先分析了车道线检测方面有三类工作2.又分析了三维目标检测研究的三类工作3.综述各章节内容四、硬件与软件设计1.总体方案
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- 第二十五周:文献阅读笔记(swin transformer)
@默然
笔记transformer深度学习人工智能机器学习
第二十五周:文献阅读笔记(swintransformer)摘要Abstract1.swintransformer文献笔记1.1.文献摘要1.2.引言1.3.SwinTransformer原理1.3.1.整体架构1.3.2.PatchMerging1.3.3.VIT中的PatchProjection1.3.4.基于滑动窗口的自注意力1.非重叠窗口中的自注意力2.连续块中的移动窗口分区3.移动窗口所存
- 第二十四周:文献阅读笔记(VIT)
@默然
笔记
第二十四周:文献阅读笔记摘要Abstract1.文献阅读1.1文献题目1.2文献摘要1.3引言1.4VIT1.4.1Embedding层结构详解1.4.2BN和LN算法1.4.3TransformerEncoder详解1.4.4MLPHead(全连接头)1.5实验1.6文献总结2.随机梯度下降(回顾)摘要VIT是一种基于Transformer模型的视觉处理方法。传统上,卷积神经网络(CNN)在计算
- 【文献阅读笔记】基于自监督的异常检测和定位:SSM
迎着黎明那道光
文献阅读笔记视觉异常检测笔记视觉检测深度学习
2022IEEETRANSACTIONSONMULTIMEDIA领域:异常检测目标:图像输入数据文章目录1、模型2、方法2.1、randommasking2.2、restorationnetwork2.3、损失函数2.4、推理时的渐进细化3、实验4、引用5、想法1、模型训练:每个图像实时生成随机的掩码,然后将掩码输入到具有两个预测头的条件自动编码器,一个用于重建图像,一个用于重建掩码。通过随机掩码
- 目标检测文献阅读笔记(一)
山在岭就在
文献阅读笔记文献阅读笔记
如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。最近研究了一段时间的目标检测问题,将阅读的一些文献资料总结如下:1、使用增强2DPCA和ML算法估计的目标追踪(Objecttrackingusingincremental2DPCAlearningandMLestimation)(英文,期刊,2008,EI检索)这篇文章的最大作用就是帮我们找到了增强型2DPCA(双
- 【文献阅读笔记】深度异常检测模型
迎着黎明那道光
视觉异常检测笔记异常检测
文章目录导读相关关键词及其英文描述记录深度异常检测模型Superviseddeepanomalydetection有监督深度异常检测Semi-Superviseddeepanomalydetection半监督深度异常检测Hybriddeepanomalydetection混合深度异常检测One-classneuralnetworkforanomalydetection用于异常检测的一类神经网络Un
- 【文献阅读笔记】SimpleNet: A Simple Network for Image Anomaly Detection and Localization
迎着黎明那道光
视觉异常检测文献阅读笔记笔记视觉检测深度学习
文章目录1、模型2、训练3、推理4、实验结果消融实验一类新奇检测5、代码6、想法2023CVPR领域:异常检测目标:图像输入数据1、模型模块:特征提取器、特征适配器、异常特征生成器、鉴别器模块功能构成特征提取器提取局部特征预训练网络的不同层特征适配器将预训练的特征转移到目标域一层的全连接层异常特征生成器生成异常样本向特征空间添加高斯噪声鉴别器鉴别出正常和异常两层的多层感知机2、训练训练过程:正常样
- 【文献阅读笔记】路径损耗模型公式
迎着黎明那道光
文献阅读笔记通信笔记算法matlab矩阵
信道的路径损耗信道的路径损耗是信道路径损耗真值的分贝数。信道路径损耗真值为发射功率与接收功率之比。信道的路径增益信道的路径增益分贝数时路径损耗的分贝值的负数。通常是负数路径损耗的模型公式Pr=Pt*K*(d0/d)^r其中:Pr是接收功率Pt是发射功率K是依赖于天线特性和平均信道损耗的常系数d0是天线的参考距离d是实际距离r是路径损耗指数K<1,取为d0处的自由空间路径损耗瑞利信道和莱斯信道在实际
- 【文献阅读笔记】关于GANomaly的异常检测方法
迎着黎明那道光
文献阅读笔记视觉异常检测笔记视觉检测深度学习
文章目录1、GANomaly:Semi-SupervisedAnomalyDetectionviaAdversarialTraining模型主要创新2、Skip-GANomaly:SkipConnectedandAdversariallyTrainedEncoder-DecoderAnomalyDetection模型主要创新点3、Industrialsurfacedefectdetectionan
- 【文献阅读笔记】Knowledge-enhanced Visual-Language Pre-training on Chest Radiology Images
Cpdr
论文阅读_副本笔记论文阅读论文笔记
文章目录摘要1.介绍2.相关工作2.1.视觉语言的预训练模型2.2.医学的命名实体识别模型2.3.医学知识增强模型3.方法3.1.算法概述3.2.问题场景3.3.知识编码器3.4.实体提取(Entityextraction)3.5.知识引导的视觉表征学习4.实验4.1.特定领域的知识(Domain-specificKnowledge)4.2.数据集4.2.1.预训练的数据集4.2.2.用于下游评估
- G.M.Chen & W.J. Starosta 的综合的跨文化交际能力模型
叶小静Stamy
2019-03-123月文献阅读笔记10-《跨文化能力研究》定义:跨文化交际能力是交际者在特定的情境中商讨文化意义、辨析文化身份,有效得体地进行交际的能力,由情感、认知和行为过程三个不断发展和完善的过程构成。关键概念:①情感过程指跨文化交际敏感性的发展,即特定情形中个人情绪或感受的变化,包括:自我概念、开明度、中立态度和社交从容。②认知过程即跨文化的意识发展,包括自我意识和文化意识的发展。③行为过
- 自动驾驶4D毫米波雷达文献综述
风靡晚
自动驾驶人工智能机器学习信息与通信信号处理算法
文献阅读笔记:《4DMillimeter-WaveRadarinAutonomousDriving:ASurvey》4D毫米波(mmWave)雷达,能够测量目标的距离、方位角、高度和速度,已经在自动驾驶领域引起了相当大的兴趣。这归因于它在极端环境下的鲁棒性,以及出色的速度和高度测量能力。4D毫米波雷达不仅是毫米波雷达的改进版本,而且还引入了许多重要的研究课题。4D毫米波雷达的原始数据大小比传统雷达
- (论文阅读34-39)理解CNN
朽月初二
论文阅读cnn人工智能笔记学习神经网络深度学习
34.文献阅读笔记简介题目Understandingimagerepresentationsbymeasuringtheirequivarianceandequivalence作者KarelLenc,AndreaVedaldi,CVPR,2015.原文链接http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Un
- (论文阅读51-57)图像描述3 53
朽月初二
论文阅读人工智能笔记学习
51.文献阅读笔记(KNN)简介题目ExploringNearestNeighborApproachesforImageCaptioning作者JacobDevlin,SaurabhGupta,RossGirshick,MargaretMitchell,C.LawrenceZitnick,arXiv:1505.04467原文链接http://arxiv.org/pdf/1505.04467.pdf
- (论文阅读46-50)图像描述2
朽月初二
论文阅读计算机视觉笔记学习
46.文献阅读笔记简介题目LearningaRecurrentVisualRepresentationforImageCaptionGeneration作者XinleiChen,C.LawrenceZitnick,arXiv:1411.5654.原文链接http://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf关键词2014年rnn图像特征和文本特征相
- (论文阅读40-45)图像描述1
朽月初二
论文阅读计算机视觉笔记学习cnn
40.文献阅读笔记(m-RNN)简介题目ExplainImageswithMultimodalRecurrentNeuralNetworks作者JunhuaMao,WeiXu,YiYang,JiangWang,AlanL.Yuille,arXiv:1410.1090原文链接http://arxiv.org/pdf/1410.1090.pdf关键词m-RNN、multimodal研究问题研究问题:解
- (论文阅读31/100)Stacked hourglass networks for human pose estimation
朽月初二
论文阅读计算机视觉笔记学习
31.文献阅读笔记简介题目Stackedhourglassnetworksforhumanposeestimation作者AlejandroNewell,KaiyuYang,andJiaDeng,ECCV,2016.原文链接https://arxiv.org/pdf/1603.06937.pdf关键词HumanPoseEstimation研究问题CNN运用于HumanPoseEstimation,
- (论文阅读32/100)Flowing convnets for human pose estimation in videos
朽月初二
论文阅读
32.文献阅读笔记简介题目Flowingconvnetsforhumanposeestimationinvideos作者TomasPfister,JamesCharles,andAndrewZisserman,ICCV,2015.原文链接https://arxiv.org/pdf/1506.02897.pdf关键词HumanPoseEstimationinVideos研究问题视频中的人体姿态估计研
- (论文阅读30/100)Convolutional Pose Machines
朽月初二
论文阅读计算机视觉笔记学习
30.文献阅读笔记CPMs简介题目ConvolutionalPoseMachines作者Shih-EnWei,VarunRamakrishna,TakeoKanade,andYaserSheikh,CVPR,2016.原文链接https://arxiv.org/pdf/1602.00134.pdf关键词ConvolutionalPoseMachines(CPMs)、articulatedposee
- (论文阅读28/100 人体姿态估计)Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
朽月初二
论文阅读计算机视觉人工智能
28.文献阅读笔记简介题目RealtimeMulti-Person2DPoseEstimationusingPartAffinityFields作者ZheCao,TomasSimon,Shih-EnWei,andYaserSheikh,CVPR,2017.原文链接arxiv.org/pdf/1611.08050.pdf【人体姿态估计2】Real-timeMulti-person2dposeesti
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要