[Algorithms]分治算法和减治算法

分治算法

  • 基本思想

分而治之:将原始的问题(难以解决的大问题)分解为若干个规模较小的相同的子问题,逐个解决子问题以得到原始问题的解[Algorithms]分治算法和减治算法_第1张图片

  • 效果

分治策略运用于计算机算法时,往往会出现分解出来的子问题与原始问题类型相同的现象,而与原始问题相比,各个子问题的size变小了,这刚好符合递归的特性。因此,计算机算法中的分治策略往往与递归联系在一起

  • 典型应用

1 最大值最小值问题(引申:寻找第K小的元素)

2 整数乘法问题(二进制)

3 快速傅里叶变换*

4 几种基于分治的排序算法

    归并排序

    快速排序

————————————————————————————————————————————————————

减治算法

2.1 基本思想

原始问题划分为若干子问题,将原始计算问题转化为其中某一个子问题的计算问题,仅通过求解某一个子问题的解得到原始问题的解

[Algorithms]分治算法和减治算法_第2张图片

  • 算法步骤:

Step 1: Divide S into n/5 subsets. Each subset contains five elements. Addsome dummy ∞ elements to the last subset if n is not a net multiple of S.
Step 2: Sort each subset of elements.
Step 3: Find the element p which is the median of the medians of the n/5 subsets.Algorithm of Selection Problem
Step 4: Partition S into S1, S2 and S3, which contain the elements less than,equal to, and greater than p, respectively.
Step 5: If |S1|k, then discard S2 and S3 and solve the problem that selects the kth smallest element from S1 during the next iteration;else if |S1| + |S2|k then p is the kth smallest element of S;otherwise, let k'= k - |S1| - |S2|, solve the problem that selects the k'th smallest element from Sduring the next iteration.

  • 典型应用

1 折半查找

2 快速排序(每一次运行一次划分算法都只是排好了一个元素)

3 深度优先查找&广度优先查找

4 拓扑排序

5 插入排序

6 二叉查找树

————————————————————————————————————————————————————

对比:

The divide-and-conquer has three divide,conquer and combine.It must deal with each problems,and combine them finally.But the decrease-and-conquer technique is based on exploring the relationship between a solution to a given  instance of a problem and a solution to a smaller instance or of the same problem.It donoy combine them and do not solve each of them.

  • For example : compute a^n

the divide-and conquer:       compute a^n=a^n/2 * a^n/2.

the decrease-and-conquer:  compute a^n={    (a^n/2)*2        if n is oven and positive}

                                                                      { (a^n-1/2)^2*2        if n is odd and >1     }

                                                                      {            a                             if a=1              }

你可能感兴趣的:(Algorithms)