Tensorflow上关于Vector Representations of Words里给出了word2vec两个源代码,本文解析基础的代码,代码地址为:https://github.com/tensorflow/tensorflow/blob/r1.3/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
上篇为代码step1-3:讲解数据下载处理,与训练数据的生成。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import zipfile
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Step 1: 下载数据
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urllib.request.urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
#
filename = maybe_download('text8.zip', 31344016)
# 解压缩并读取数据转化到数组中.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split() #split(分割成序列)
return data
vocabulary = read_data(filename)
print('Data size', len(vocabulary))
#建立字典
# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 50000
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))#计数,取词频前50000个词,其余的为unk,
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)#高频词排序给编号
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]#给高频词一个索引
else:
index = 0 # 低频词索引为0
unk_count += 1 #统计低频词的个数
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) #逆词汇,键和值与dictionary相反
return data, count, dictionary, reversed_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
vocabulary_size)
del vocabulary # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
#如vocabulary(daefbmc……)其中:1.a词频:600;2.b词频:500;3.c词频:400;4.d词频:300;5.e词频:200;6.f词频:100;……unk:4148
#count([UNK,4148],[a,600],[b,500],[c,400],[d,300],[e,200,[f,100])
#dictionary([a;1],[b:2],[c:3],[d:4],[e;5],[f;6])
#data:{4,1,5,6,2,0,3}
#reversed_dictionary([1;a],[2:b],[3:c],[4:d],[5;e],[6;f])
#生成训练数据
#从文本总体的第二次开始,每个单词一次作为输入,输出可以是上下文范围内的单词中的任何一个(一般不是取全部而是随机抽取其中几组,增加随机性)
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
#batch_size:每次训练的词长度;num_skips:每个输入词重复的次数(一个输入产生多少个标签数据),skip_window:向左右取多少词
global data_index #global:全局变量
assert batch_size % num_skips == 0 #assert:断言
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32) #一维
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) #二维
span = 2 * skip_window + 1 # 左右两边各取skip_window,一共span个
buffer = collections.deque(maxlen=span) #防止超长,挤出前面的数据,确保span个训练数据
if data_index + span > len(data): #依次取span个词
data_index = 0
buffer.extend(data[data_index:data_index + span])
data_index += span
for i in range(batch_size // num_skips):
target = skip_window #butter[skip_window]为输入数据
targets_to_avoid = [skip_window] #去除输入词自己本身
for j in range(num_skips): #输入词重复num_skips次
while target in targets_to_avoid:
target = random.randint(0, span - 1) #随机生成 (0, span - 1)之间整数
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window] #训练输入的序列
labels[i * num_skips + j, 0] = buffer[target] #训练输出的序列(标签,对应词频的排序)
if data_index == len(data): #超长时回到开始
buffer[:] = data[:span]
data_index = span
else:
buffer.append(data[data_index]) #挤掉开始几个,换一组词训练
data_index += 1
# Backtrack a little bit to avoid skipping words in the end of a batch
data_index = (data_index + len(data) - span) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
#如:vocabulary(m|daefbm|c……)取batch_size=6,num_skips=2,skip_window=1
#batch = [4,4,1,1,5,5]
#labels= [0,1,4,5,1,6]