多重组合数问题

题目描述:

  • n n n种物品,第i种物品有 a i a_i ai个,不同种类物品可以相互区分但相同种类的物品无法区分。从这些物品中取出 m m m个的话,有多少种取法,求出方案数模 M M M的余数。

限制条件:

  • 1 ≤ m , n , a i ≤ 1000 1≤m,n,a_i≤1000 1m,n,ai1000
  • 0 ≤ M ≤ 10000 0≤M≤10000 0M10000

样例说明:

  • 输入:
    • n=3
    • m=3
    • a={1,2,3}
    • M=10000
  • 输出:
    • 6=(0+0+3=0+1+2=0+2+1=1+0+2=1+1+1=1+2+0=m=3)
  • 注意:0+1+2表示:第1/2类物品取0个,第三类物品取3个。根据这个含义0+1+2和0+2+1不是重复的。

动态规划:

  • 步骤
    • dp数组含义 d p [ i ] [ j ] dp[i][j] dp[i][j]=从前 i i i种物品中取出 j j j个的组合数。取不出令为0.
    • 初始条件
      • d p [ 0 − n ] [ 0 ] = 1 dp[0-n][0]=1 dp[0n][0]=1
      • d p [ 1 ] [ 1 − m ] = { 1 a [ 1 ] ≥ j 0 a [ 1 ] < j dp[1][1-m]=\begin{cases} 1 & a[1]≥j \\ 0 & a[1]<j \end{cases} dp[1][1m]={10a[1]ja[1]<j
    • 递推公式 d p [ i ] [ j ] = ∑ k = 0 m i n ( j , a [ i ] ) d p [ i − 1 ] [ j − k ] dp[i][j]=∑_{k=0}^{min(j,a[i])}dp[i-1][j-k] dp[i][j]=k=0min(j,a[i])dp[i1][jk]
    • 递推方向:从上向下
    • 时间复杂度 O ( n m 2 ) O(nm^2) O(nm2)
    • 优化
      • 根据一般的经验,在只使用从上到下的递推的动态规划中如果能引入左到右的辅助递推,时间复杂度为更低。根据这一思想,我们化解上面的递推公式: ∑ k = 0 m i n ( j , a [ i ] ) d p [ i − 1 ] [ j − k ] = ∑ k = 1 m i n ( j , a [ i ] ) d p [ i − 1 ] [ j − k ] + d p [ i − 1 ] [ j ] ∑_{k=0}^{min(j,a[i])}dp[i-1][j-k]=∑_{k=1}^{min(j,a[i])}dp[i-1][j-k]+dp[i-1][j] k=0min(j,a[i])dp[i1][jk]=k=1min(j,a[i])dp[i1][jk]+dp[i1][j] = ∑ k = 0 m i n ( j − 1 , a [ i ] − 1 ) d p [ i − 1 ] [ j − ( 1 + k ) ] + d p [ i − 1 ] [ j ] =∑_{k=0}^{min(j-1,a[i]-1)}dp[i-1][j-(1+k)]+dp[i-1][j] =k=0min(j1,a[i]1)dp[i1][j(1+k)]+dp[i1][j]由于 d p [ i ] [ j − 1 ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − 1 − k ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − ( 1 − k ) ] dp[i][j-1]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-1-k]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-(1-k)] dp[i][j1]=k=0min(j1,a[i])dp[i1][j1k]=k=0min(j1,a[i])dp[i1][j(1k)] j ≤ a [ i ] j≤a[i] ja[i]时则有 j − 1 ≤ a [ i ] − 1 j-1≤a[i]-1 j1a[i]1 j − 1 ≤ a [ i ] j-1≤a[i] j1a[i],所以 m i n ( j − 1 , a [ i ] − 1 ) = m i n ( j − 1 , a [ i ] ) = j − 1 min(j-1,a[i]-1)=min(j-1,a[i])=j-1 min(j1,a[i]1)=min(j1,a[i])=j1 ∑ k = 0 m i n ( j − 1 , a [ i ] − 1 ) d p [ i − 1 ] [ j − ( 1 + k ) ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − ( 1 + k ) ] = d p [ i ] [ j − 1 ] ∑_{k=0}^{min(j-1,a[i]-1)}dp[i-1][j-(1+k)]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-(1+k)]=dp[i][j-1] k=0min(j1,a[i]1)dp[i1][j(1+k)]=k=0min(j1,a[i])dp[i1][j(1+k)]=dp[i][j1] j > a [ i ] j>a[i] j>a[i],所以 j − 1 > a [ i ] − 1 j-1>a[i]-1 j1>a[i]1 j − 1 ≥ a [ i ] j-1≥a[i] j1a[i],故 m i n ( j − 1 , a [ i ] − 1 ) = a [ i ] − 1 , m i n ( j − 1 , a [ i ] ) = a [ i ] min(j-1,a[i]-1)=a[i]-1,min(j-1,a[i])=a[i] min(j1,a[i]1)=a[i]1,min(j1,a[i])=a[i]则: ∑ k = 0 m i n ( j − 1 , a [ i ] − 1 ) d p [ i − 1 ] [ j − ( 1 + k ) ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − ( 1 + k ) ] − d p [ i − 1 ] [ j − 1 − a [ i ] ) ] ∑_{k=0}^{min(j-1,a[i]-1)}dp[i-1][j-(1+k)]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-(1+k)]-dp[i-1][j-1-a[i])] k=0min(j1,a[i]1)dp[i1][j(1+k)]=k=0min(j1,a[i])dp[i1][j(1+k)]dp[i1][j1a[i])] = d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 − a [ i ] ) ] =dp[i][j-1]-dp[i-1][j-1-a[i])] =dp[i][j1]dp[i1][j1a[i])]
      • 时间复杂度 O ( n m ) O(nm) O(nm)
    • 结果 d p [ n ] [ m ] dp[n][m] dp[n][m]

代码:

#include 
#define Max_N   1005
using namespace std;

int n,m,M;
int a[Max_N];
int dp[Max_N][Max_N];

//动态规划
void solve()
{
    //初始化
    for(int i=0; i<=n; i++)
        dp[i][0]=1;
    for(int j=1;j<=m;j++)
        dp[0][j]=0;

    //递推
    for(int i=1; i<=n; i++)
        for(int j=1; j<=m; j++)
        {
            dp[i][j]=dp[i][j-1]+dp[i-1][j];
            if (j>a[i])
                dp[i][j]-=dp[i-1][j-1-a[i]];
            dp[i][j]=dp[i][j]%M;
        }

    //结果
    cout<<dp[n][m]<<endl;

}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>a[i];
    cin>>M;
    solve();
    return 0;
}
/*
3 3
1 2 3
10000
*/

你可能感兴趣的:(ACM)