pandas入门 笔记

滤除缺失数据
data.dropna(axis=1,how=’all’) #pandas的dropna函数里的axis=0是对进行操作

import numpy as np
from pandas import Series,DataFrame          #约定俗成的导入方法
import pandas as pd
df=DataFrame(np.random.randn(7,3))
df
    0              1               2
0   1.233293    0.808366    -1.395037
1   -2.119901   1.020265    -1.838668
2   0.036282    -1.194296   1.062114
3   -0.005518   -0.508407   2.166345
4   -0.168671   1.506642    1.294891
5   -0.278522   0.016571    -1.090438
6   -0.258114   0.027558    0.122468
df.dropna(thresh=3)                   ###一行中至少三个非NAN的值

             0      1          2
5   -1.596875   1.574546    0.312099
6   -0.963191   -0.304063   0.429177

填充缺失数据

df:
    0            1                2
0   0.734225    NaN              NaN
1   0.508512    NaN              NaN
2   -1.814688   NaN              NaN
3   0.914939    NaN             0.486078
4   -1.417042   NaN             1.061631
5   0.327197    -1.658661       0.573605
6   1.516876    -0.322871      -1.013175

df.fillna({1:0.5,3:-1})         #注意:填充具体值处一定是原本缺失数据的地方!!对这些地方中的:第一列赋值0.5,第3列赋值-1(没有第三列)
df
     0             1         2
0   0.734225    0.500000    NaN
1   0.508512    0.500000    NaN
2   -1.814688   0.500000    NaN
3   0.914939    0.500000    0.486078
4   -1.417042   0.500000    1.061631
5   0.327197    -1.658661   0.573605
6   1.516876    -0.322871   -1.013175

层次化索引
出现分层索引,即层次化索引

IN:
data=Series(np.random.randn(10),index=[['a','a','a','b','b','b','c','c','d','d'],[1,2,3,1,2,3,1,2,2,3]])
data
OUT:
a  1    2.138609
   2    0.608215
   3    0.368269
b  1   -0.709574
   2    0.671569
   3    1.421320
c  1   -0.384030
   2   -1.273858
d  2    0.828642
   3   -2.359443
dtype: float64
IN:
data.index
OUT:
MultiIndex(levels=[[u'a', u'b', u'c', u'd'], [1, 2, 3]],
           labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]])
In:
data.unstack()    #把分层的索引排布到列上
OUT:   

      1           2               3
a   2.138609    0.608215    0.368269
b   -0.709574   0.671569    1.421320
c   -0.384030   -1.273858   NaN
d   NaN         0.828642    -2.359443

IN:
data.unstack().stack()
​
Out[51]:
a  1    2.138609
   2    0.608215
   3    0.368269
b  1   -0.709574
   2    0.671569
   3    1.421320
c  1   -0.384030
   2   -1.273858
d  2    0.828642
   3   -2.359443
dtype: float64
IN:
frame=DataFrame(np.arange(12).reshape((4,3)),
                  index=[['a','a','b','b'],[1,2,1,2,]],
                  columns=[['Ohio','Ohio','Colorado'], ['Green','Red','Green']])
frame

pandas入门 笔记_第1张图片
注意!索引的名称和轴标签是完全不同的
重排分级顺序
用于调整某条轴上的各级别的顺序,或者根据级别上的值对数据进行排序

你可能感兴趣的:(利用python进行数据分析)