深度学习应用到图像超分辨率重建3

非宁静无以致远。

我们在之前两篇博客,深度学习应用到图像超分辨率重建1, 深度学习应用到图像超分辨率重建2已经介绍了一些图像超分辨的基础了, 下面我们继续分享一些最新的一些论文。之前只是想稍微简单介绍一下每一篇文章,但是写着写着发现写的越来越多,联想的就越来越多了。将所有的内容放到一篇文章可能显得有点冗杂,所以自己将每一篇文章单独写了一个博客,然后给了相应的传送门。

1. CrossNet: An End-to-end Reference-based Super Resolution Network using Cross-scale Warping (ECCV, 2018)

传送门:文献阅读:CrossNet: An End-to-end Reference-based Super Resolution Network using Cross-scale Warping

2. Multi-scale Residual Network for Image Super-Resolution (ECCV, 2018)

传送门: 文献阅读:Multi-scale Residual Network for Image Super-Resolution

3. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network (ECCV, 2018)

传送门: 文献阅读:Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network

4. SRFeat: Single Image Super-Resolution with Feature Discrimination (ECCV, 2018)

传送门: 文献阅读:SRFeat: Single Image Super-Resolution with Feature Discrimination

5. Image Super-Resolution Using Very Deep Residual Channel Attention Networks (ECCV, 2018)

传送门: 文献阅读:Image Super-Resolution Using Very Deep Residual Channel Attention Networks

6. To learn image super-resolution, use a GAN to learn how to do image degradation first (ECCV, 2018)

传送门: 文献阅读:To learn image super-resolution, use a GAN to learn how to do image degradation first

7. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks (ECCV18 Workshops )

传送门:文献阅读: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

8. Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network(ECCV2018 Workshops)

文章地址:EPSR
作者的项目地址:https://github.com/subeeshvasu/2018_subeesh_epsr_eccvw

9. Video Super-Resolution Using Non-Simultaneous Fully Recurrent Convolutional Network (TIP 2019)

文章地址: 暂无
作者的项目地址:暂无

这里我们还介绍几篇写的比较好的博客:

  1. 知乎: 深度学习端到端超分辨率方法发展历程(二)
  2. 量子位:超分辨率技术如何发展?这6篇ECCV 18论文带你一次尽览
  3. 知乎: 超分辨率重建相关网站整理(持续更新)
  4. github: Single-Image-Super-Resolution
  5. 知乎:现在low-level vision的热点方向是什么?

图像超分辨技术发展的还是比较快的,不管是图像超分辨重建,图像去噪,图像去马赛克,这些都有着千丝万缕的关系。我们都可以将好的思想借鉴MRI重建当中。另外,最近的sr的项目基本上都是pytorch写的~

你可能感兴趣的:(图像超分辨率重建,图像超分辨率重建)