- 如何利用大数据与AI技术革新相亲交友体验
h17711347205
回归算法安全系统架构交友小程序
在数字化时代,大数据和人工智能(AI)技术正逐渐革新相亲交友体验,为寻找爱情的过程带来前所未有的变革(编辑h17711347205)。通过精准分析和智能匹配,这些技术能够极大地提高相亲交友系统的效率和用户体验。大数据的力量大数据技术能够收集和分析用户的行为模式、偏好和互动数据,为相亲交友系统提供丰富的信息资源。通过分析用户的搜索历史、浏览记录和点击行为,系统能够深入了解用户的兴趣和需求,从而提供更
- 未来软件市场是怎么样的?做开发的生存空间如何?
cesske
软件需求
目录前言一、未来软件市场的发展趋势二、软件开发人员的生存空间前言未来软件市场是怎么样的?做开发的生存空间如何?一、未来软件市场的发展趋势技术趋势:人工智能与机器学习:随着技术的不断成熟,人工智能将在更多领域得到应用,如智能客服、自动驾驶、智能制造等,这将极大地推动软件市场的增长。云计算与大数据:云计算服务将继续普及,大数据技术的应用也将更加广泛。企业将更加依赖云计算和大数据来优化运营、提升效率,并
- 架构评审的自动化与人工智能: 如何提高效率
光剑书架上的书
架构自动化人工智能运维
1.背景介绍架构评审是软件开发过程中的一个关键环节,它旨在确保软件架构的质量、可维护性和可扩展性。传统的架构评审通常是由人工进行,需要大量的时间和精力。随着大数据技术和人工智能的发展,自动化和人工智能技术已经开始应用于架构评审,从而提高评审的效率和准确性。在本文中,我们将讨论如何通过自动化和人工智能技术来提高架构评审的效率。我们将从以下几个方面进行讨论:背景介绍核心概念与联系核心算法原理和具体操作
- 使用python实现微信小程序自动签到
光头哥不光头
python
学校:重庆财经职业学院学院:应用技术学院专业班级:大数据技术与应用05班名字:吴雨璇指导老师:张彤老师一:使用python实现微信小程序自动签到意义1.首先对于咱们的APP有很大的作用,那就是当用户点击签到以后,平台就有那么多用户在使用,签到的人越多,产品的活跃度就越高。2.还有一点就是大家应该能够想到,那就是用户点击签到是在首页,有些点开就需要进行签到,点击较多,对于产品销售是非常重要的。3.微
- starrocks和clickhouse数据库比较
CodeMaster_37714848
clickhouse数据库
Starrocks和ClickHouse都是用于数据分析的数据库,但它们的设计理念和用途有所不同。下面是这两者的一些主要比较点:1.基础架构与设计目标Starrocks:Starrocks是一个专注于实时数据分析的平台,常用于大数据处理和商业智能应用。它设计用于高效处理大规模数据集,并且支持复杂查询和数据处理。支持多种数据源的集成,并且可以与其他大数据技术(如Hadoop、Spark)协同工作。C
- 大数据技术之Hadoop(一)
pauls
Hadoop概述1.1Hadoop是什么Hadoop是什么1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。2)主要解决,海量数据的存储和海量数据的分析计算问题。3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。Hadoop生态1.2Hadoop发展历史(了解)Hadoop发展历史1)Hadoop创始人DougCutting,为了实现与Google类似
- Hive 的 SerDe 是什么?
Shockang
大数据技术体系大数据hive
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文hive的SerDe是什么SerDe是Serializer/Deserializer的简写。hive使用SerDe进行行对象的序列与反序列化。最后实现把文件内容映射到hive表中的字段数据类型。为了更好的阐
- 【大数据Big DATA】大数据解决方案,提供完整的大数据采集,大数据存储,大数据处理,具体业务应用解决方案
_晓夏_
JAVA大数据大数据解决方案大数据BIGDATA大数据采集大数据存储大数据处理大数据分析
大数据解决方案是指利用大数据技术,结合企业实际业务需求,为企业提供数据采集、存储、处理、分析和报告等一站式服务,以帮助企业更好地利用大数据提高运营效率、优化决策制定。以下是一些常见的大数据解决方案:一、数据采集数据采集是大数据解决方案的起点,涉及从各种数据源中抓取和收集数据。常见的大数据采集工具包括Flume、Scribd等,这些工具可以帮助企业快速、高效地采集各类数据。二、数据存储大数据存储解决
- Spark一些个人总结
易逑实战数据
大数据sparkbigdatascala
文章目录前言一、Spark是什么二、Spark用来做什么三、Spark的优势是什么四、为什么用Spark五、Spark解决了什么问题总结前言随着大数据技术的发展,一些更加优秀的组件被提了出来,比如现在最常用的Spark组件,基于RDD原理在大数据处理中占据了越来越重要的作用。在此我们探索了Spark的原理,以及其在大数据开发中的重要作用。一、Spark是什么Spark是一个用来实现快速,通用的集群
- 系统架构师考试学习笔记第三篇——架构设计高级知识(13)未来信息综合技术
SheldonK
软件架构师学习分享学习笔记
本课时考点:第13课时主要学习信息物理系统技术、人工智能技术、机器人技术、边缘计算、数字孪生体技术以及云计算和大数据技术等内容。根据考试大纲,本课时知识点会涉及单项选择题(约占3~5分)和下午案例题(25分),论文也会有覆盖。本课时知识架构如图13.1所示。一、信息物理系统技术概述1.信息物理系统的概念信息物理系统(Cyber-PhysicalSystem,CPS),最早由美国国家航空航天局于19
- Mac 安装Hadoop教程(HomeBrew安装)
追光天使
macoshadoop大数据
1.引言本教程旨在介绍在Mac电脑上安装Hadoop,便于编程开发人员对大数据技术的熟悉和掌握。2.前提条件2.1安装JDK想要在你的Mac电脑上安装Hadoop,你必须首先安装JDK。具体安装步骤这里就不详细描述了。你可参考Mac安装JDK8。2.2配置ssh环境在Mac下配置ssh环境,防止后面启动hadoop时出现Connectionrefused连接被拒绝的错误。sshlocalhost执
- 2024年(第7届)“泰迪杯”数据分析技能赛通知
泰迪智能科技01
泰迪杯大数据人工智能
由泰迪杯数据分析技能赛组织委员会、广东泰迪智能科技股份有限公司主办,广东省工业与应用数学学会、人民邮电出版社和北京泰迪云智信息技术研究院协办的“泰迪杯”数据分析技能赛(以下简称竞赛)即将开展。竞赛目的在于以赛促学、以赛促教、以赛促改、以赛促创,实现大数据技术技能人才培养的“岗课赛证”融通,深化教学标准与岗位标准、教学过程与生产过程的对接,培养更多升级版的高层次高素质技术技能人才。竞赛时间安排报名起
- 大数据技术之Flume 企业开发案例——自定义 Interceptor(8)
大数据深度洞察
Flumeflume大数据
目录自定义Interceptor1)案例需求2)需求分析3)实现步骤创建一个Maven项目,并引入以下依赖。定义CustomInterceptor类并实现Interceptor接口。编辑flume配置文件分别在hadoop12,hadoop13,hadoop14上启动flume进程,注意先后顺序。在hadoop12使用netcat向localhost:44444发送字母和数字。观察hadoop13
- 大数据技术之HBase 与 Hive 集成(7)
大数据深度洞察
Hbase大数据hbasehive
目录使用场景HBase与Hive集成使用1)案例一2)案例二使用场景如果大量的数据已经存放在HBase上面,并且需要对已经存在的数据进行数据分析处理,那么Phoenix并不适合做特别复杂的SQL处理。此时,可以使用Hive映射HBase的表格,之后通过编写HQL进行分析处理。HBase与Hive集成使用Hive安装https://blog.csdn.net/qq_45115959/article/
- 大数据技术之Flume 数据流监控——Ganglia 的安装与部署(11)
大数据深度洞察
Flume大数据flume
目录Flume数据流监控Ganglia的安装与部署Ganglia组件介绍1)安装Ganglia2)在hadoop12修改配置文件/etc/httpd/conf.d/ganglia.conf3)在hadoop12修改配置文件/etc/ganglia/gmetad.conf4)在hadoop12,hadoop13,hadoop14修改配置文件/etc/ganglia/gmond.conf5)在hado
- Hadoop 中的大数据技术:调优篇(3)
大数据深度洞察
大数据hadoop分布式
HDFS—故障排除NameNode故障处理需求NameNode进程崩溃且存储的数据丢失,如何恢复NameNode?故障模拟终止NameNode进程[lzl@hadoop12current]$kill-919886删除NameNode存储的数据[
[email protected]]$rm-rf/opt/module/hadoop-3.1.3/data/dfs/name/*问题解决从Se
- 大数据技术之Flume
okbin1991
大数据flumejavahadoop开发语言
第1章Flume概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume基础架构Flume组成架构如下图所示。1.2.1AgentAgent是一个JVM进程,它以事件的形式将数据从源头送至目的。Agent主要有3个部分组成,Source、Channel、Sink。1.2.2Sourc
- 大数据技术之HBase API(3)
大数据深度洞察
Hbase大数据hbase数据库
目录HBaseAPI环境准备创建连接单线程创建连接多线程创建连接DDLDMLHBaseAPI环境准备新建项目后,在pom.xml中添加如下依赖:org.apache.hbasehbase-server2.4.11org.glassfishjavax.elorg.glassfishjavax.el3.0.1-b06注意:javax.el包虽然会报错不存在,但这仅是一个测试用的依赖,不会影响实际使用。
- 大数据技术之HBase整合 Phoenix(6)
大数据深度洞察
Hbase大数据hbase数据库
目录HBase整合PhoenixPhoenix简介Phoenix定义为什么使用PhoenixPhoenix快速入门安装1)官网地址2)Phoenix部署PhoenixShell操作Table表的映射数字类型说明PhoenixJDBC操作Phoenix二级索引二级索引配置文件全局索引(globalindex)包含索引(coveredindex)本地索引(localindex)HBase整合Phoen
- 大数据技术之Zookeeper概述(1)
大数据深度洞察
Zookeeper大数据zookeeper分布式云原生
目录Zookeeper入门概述Zookeeper的主要特点包括:Zookeeper的应用场景:Zookeeper的基本概念:架构:Zookeeper工作机制Zookeeper数据结构Znode(ZookeeperNode)Znode的类型Znode路径Znode属性Watcher监听器使用示例总结Zookeeper入门概述Zookeeper是一个分布式的、开放源码的协调服务,用于大型应用中管理和协
- 综合治税的发展前景
alankuo
人工智能人工智能
综合治税的发展前景较为广阔,主要体现在以下几个方面:-技术应用持续深化:-大数据与人工智能助力精准治税:随着大数据技术的不断发展,税务部门能够整合来自多部门、多渠道的海量数据,包括企业的财务数据、交易数据、银行流水等,通过对这些数据的深度分析和挖掘,可以精准识别税收风险点和潜在的偷逃税行为。例如,利用大数据分析企业的销售数据与申报纳税数据的匹配度,发现异常及时预警和查处。人工智能技术则可以辅助税务
- Kylin的工作原理及使用分享操作指南
vvvae1234
kylin
ApacheKylin是一个分布式的分析引擎,专为大数据环境中的快速分析和查询而设计。它通过构建OLAP(联机分析处理)立方体,使得对海量数据的实时分析成为可能,极大地提升了数据查询的效率。本文将详细介绍Kylin的工作原理,结合实际操作案例,分享如何有效使用Kylin进行大数据分析。1.Kylin概述Kylin是一个开源项目,支持SQL查询,兼容与Hive和MapReduce等大数据技术的集成。
- 《未来二十年,AI、区块链、云与大数据技术引领全球变革》
久绊A
文献/论文人工智能区块链云计算大数据
摘要在未来二十年,全球社会与经济将深刻受到人工智能(AI)、区块链(Blockchain)、云计算(Cloud)和大数据(Data)四大核心技术的驱动。这些技术不仅从宏观上重塑产业结构,更在微观层面显著提升生活品质与效率。本文通过详尽的案例分析,结合国内外最新研究成果,深入剖析这四大技术如何在教育、智能家居、农业、金融等多个关键领域产生深远影响。关键字人工智能(AI)、区块链(Blockchain
- 向量数据库 Faiss 的搭建与使用
eqa11
数据库
向量数据库Faiss的搭建与使用一、引言在人工智能和大数据技术飞速发展的今天,向量数据库作为处理高维数据检索的关键技术,越来越受到重视。Faiss,作为由MetaAI(原FacebookAIResearch)开源的高效相似性搜索库,以其卓越的性能和灵活性,成为众多技术选型中的佼佼者。本文将深入探讨Faiss的搭建和使用,旨在为读者提供一个全面而详细的指南。二、Faiss简介与环境搭建1、Faiss
- 知识分享系列三:大数据技术(上)
jinruimeng
知识分享大数据
本文系统地介绍了大数据技术的相关知识,由于篇幅比较长,分为上下两部分,其中上半部分先介绍基本概念、核心领域,下半部分介绍主要技术、平台架构,以及相关企业案例。目录一、基本概念1.1从数据资源到大数据1.2从大数据到数据要素二、核心领域2.1概述2.2数据存储与计算2.2.1发展历程2.2.2发展特点2.2.2.1云化改造全面加速2.2.2.2融合一体化持续加深2.2.2.3安全能力快速补强2.2.
- Distrii办伴:空间+科技+服务 解决企业办公全生命周期需求
娱扒小公主
ToC市场风口之后,ToB的春天眼看来临。在消费级市场,中国BAT力抗欧美的谷歌、脸书、亚马逊。然而拥有相当体量企业市场的中国,却没有一个知名的企业服务巨头。随着人工智能、大数据技术的应用场景逐步扩大,更丰富、更落地的企业服务场景将在不远的未来不断涌现。作为一家自创立之初就专注于提供智慧办公解决方案的科技公司,Distrii办伴始终坚持以科技为内核,为企业带来更便捷高效的服务。三年来,办伴率旗下三
- 大数据技术之Flume 企业开发案例——负载均衡和故障转移(6)
大数据深度洞察
Flume大数据flume负载均衡
目录负载均衡和故障转移1)案例需求2)需求分析3)实现步骤负载均衡和故障转移1)案例需求使用Flume1监控一个端口,其sink组中的sink分别对接Flume2和Flume3,采用FailoverSinkProcessor,实现故障转移的功能。2)需求分析故障转移案例3)实现步骤准备工作在/opt/module/flume/job目录下创建group2文件夹[lzl@hadoop12job]$c
- Spring Boot实战:使用Spring Cloud Stream处理实时交易数据
潘多编程
springboot后端java
随着金融市场的快速发展以及大数据技术的广泛应用,实时处理交易数据变得越来越重要。SpringBoot和SpringCloudStream为开发者提供了一个强大的工具组合来构建这样的系统。本文将介绍如何使用这些工具来创建一个能够接收、处理并转发实时交易数据的应用程序。1.引言在金融市场中,交易数据通常需要快速地被采集、处理和分析。例如,股票价格的变动、订单的执行情况等都需要及时地被记录下来,并且根据
- 大数据技术之Zookeeper安装 (2)
大数据深度洞察
Zookeeper大数据hadoopzookeeper
目录下载地址本地模式安装1)安装前准备2)配置修改3)操作Zookeeper配置参数解读Zookeeper集群操作集群规划解压安装配置服务器编号配置zoo.cfg文件集群操作Zookeeper集群启动停止脚本创建脚本增加脚本执行权限Zookeeper集群启动脚本Zookeeper集群停止脚本Zookeeper选举机制(面试重点)首次启动选举非首次启动选举关键术语解释下载地址官网首页:ApacheZ
- 大数据技术之Flume事务及内部原理(3)
大数据深度洞察
Flumeflume大数据
目录FlumeAgent架构概述FlumeAgent内部工作流程FlumeAgent的配置FlumeAgent内部重要组件ChannelSelectorSinkProcessorApacheFlume是一个分布式的、可靠的、可用的服务,用于有效地收集、聚合和移动大量日志数据。它具有简单灵活的架构,基于流式数据流动模型。Flume主要由三个核心组件组成:Source(源)、Channel(通道)和S
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟