- 企业级知识库私有化部署:腾讯混元+云容器服务TKE实战
大熊计算机
#腾讯云语言模型
1.背景需求分析在金融、医疗等数据敏感行业,企业需要构建完全自主可控的知识库系统。本文以某证券机构智能投研系统为原型,演示如何基于腾讯混元大模型与TKE容器服务实现:千亿级参数模型的私有化部署金融领域垂直场景微调高并发低延迟推理服务全链路安全合规方案1.1典型技术挑战#性能基准测试数据(单位:QPS)|场景|裸机部署|容器化部署|优化后||--------------------|--------
- 如何构建知识库
追逐此刻
其他其他
构建个人知识库是一个系统化的过程,需要结合工具选择、信息管理和持续优化。以下是分步骤的实用指南,包含现代工具和方法的建议:一、明确知识库定位(Why)核心目标学习型:支持学术研究/职业发展(如医学生构建临床知识体系)创作型:支撑内容产出(如自媒体作者的选题库)项目型:管理特定领域知识(如程序员的技术栈文档)领域聚焦建议采用「T型策略」:1个深度领域+3个辅助领域(如主攻机器学习,辅修心理学/设计/
- 增强版 Kimi:AI 驱动的智能创作平台,实现一站式内容生成(图片、PPT、PDF)!
每天译点晓知识
AI人工智能专栏人工智能PPTPDF一键生成AI图片生成
前言基于扣子Coze零代码平台,我们从零到一轻松实现了专属Bot机器人的搭建。AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI的不同形态愈发显现,如何将其动态组合,凸显其强大爆发力!!!接下来,我们介绍通过Kimi进行功能增强?使得我们的Bot具备一键生成图片、PPT编写、PDF制作......模型配置Kimi月之暗面旗下国产大模型,以独特的长文本处理能力,
- 大模型——Dify:知识库与外部知识库
不二人生
大模型人工智能大模型dify
Dify:知识库与外部知识库相比于AI大模型内置的静态预训练数据,知识库中的内容能够实时更新,确保LLM可以访问到最新的信息,避免因信息过时或遗漏而产生的问题。知识库与文档开发者可以通过此方式确保LLM不仅仅依赖于训练数据中的知识,还能够处理来自实时文档和数据库的动态数据,从而提高回答的准确性和相关性。https://docs.dify.ai/zh-hans/guides/knowledge-ba
- GPT-5企业级应用落地指南:70个工业场景实战部署全景(2025)
知识产权13937636601
计算机GPT-5API
摘要:随着GPT-5在2025年全面开放企业API,其多模态理解、自主任务规划、超长上下文(128Ktokens)能力正颠覆传统工业智能化范式。本指南基于全球200+企业实测案例,提炼70个工业场景的部署方案,涵盖研发设计、生产制造、供应链管理等九大领域。核心解决三大落地挑战:安全合规部署方案(企业知识库隔离训练、区块链存证)、行业场景迁移(小样本领域适应、多模态提示工程)、成本效率优化(MoE稀
- 医疗大模型深度剖析:腾讯医疗大模型案例,引领智能医疗新时代!
腾讯医疗大模型是混元大模型的医疗版。在DeepSeek爆火之前,腾讯健康已经依据医疗细分场景的具体需求,以腾讯自研的混元大模型,打造出医疗行业大模型。DeepSeek-R1发布后,腾讯健康第一时间完成了混元大模型与DeepSeek的融合。腾讯医疗大模型深度融合医学知识库与自然语言处理技术,旨在为医疗行业提供智能化的辅助解决方案。通过海量医学文献、临床指南、电子病历等专业数据训练,具备强大的医学知识
- 老年基础护理实训室建设方案:构建标准化护理实训体系
凯禾瑞华_实训室建设
实训室建设人工智能大数据vrar虚拟现实unity
一、实训室特色(一)高度仿真场景老年基础护理实训室建设方案强调构建高度仿真的老年护理场景,模拟家庭、养老院、医院病房等真实环境,配备仿真老年人体模型、适老化家具及设备,让学生身临其境开展实训。点击获取实训室建设方案(二)智能化设备应用引入智能护理监测设备、模拟急救仪器等,结合DeepSeek+知识库大模型,实现实训过程数据记录与分析,为教学提供精准反馈,此为老年基础护理实训室建设方案的重要创新点。
- OpenAI Agents SDK 客户服务应用案例
lyh1344
easyui前端javascript
OpenAIAgentsSDK客户服务应用案例OpenAIAgentsSDK可用于构建智能化、自动化的客户服务解决方案。以下是一些典型应用案例及实现方法:智能问答助手通过OpenAIAgentsSDK训练一个基于知识库的问答助手,自动回答客户常见问题。可集成到网站、APP或社交媒体平台,提供24/7服务。支持自然语言处理,准确理解客户意图,提供个性化回复。多轮对话处理利用SDK的上下文保持能力,处
- RAG系列:RAG越来越不准?你可能忽略了“元数据”的力量
数智前沿
数字化转型人工智能RAG
你是否也有这样的困扰?问大模型一个很具体的问题:“请告诉我A软件的安装方法。”结果它却信誓旦旦地告诉了你B软件的安装步骤。在这个过程中,你可能已经花了大量时间解析和清洗上千份文档,接入RAG,但结果仍然不理想。为什么会这样?其中一个很重要的原因是,我们花了很多时间构建知识库,却忽略了一个看似不起眼的部分——元数据。简单来说,元数据就是“描述数据的数据”。比如:文档的元数据:作者、标题、文档类型、创
- 在Ubuntu下建设自己的本地大模型docker+ollama+openwenui
东郭野人
ubuntudocker语言模型deepseek
在经过多种尝试下,出现了各种问题,终于搭建起了自己的本地大模型和知识库,下面为大家讲解过程。一.docker1.安装安装docker逐步执行以下代码或者看其他的文章,我的ubuntu是22.04sudocurl-fsSLhttps://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg|sudoapt-keyadd-sudoadd-apt-repositor
- Trae CN IDE 中 PHP 开发的具体流程和配置指南
咖啡续命又一天
TraeCNIDEidephp开发语言AI编程
以下是TraeCNIDE中PHP开发的具体流程和配置指南,结合知识库内容和实际开发需求整理,并附实例说明:一、安装与初始配置下载与安装TraeIDE访问Trae官网下载macOS或Windows版本。安装完成后,启动Trae,首次运行会进入初始化向导。初始设置主题与语言:选择暗色/亮色主题,语言设为简体中文。导入配置:从VSCode或Cursor导入插件、快捷键(保留原有习惯)。登录账号:注册Gi
- 从零构建企业知识库问答系统(基于通义灵码+RAG+阿里云OSS的落地实践)
大熊计算机
开发实战阿里云云计算
1企业知识管理在大型企业环境中,知识管理面临三大痛点:信息孤岛(40%的企业知识分散在10+个系统中)、检索低效(员工平均每周浪费3.5小时查找信息)和知识流失(专家离职导致关键经验断层)。传统解决方案如Wiki或文档管理系统存在两大局限:被动检索:用户需精确知道搜索关键词理解缺失:无法解析"季度营收增长率计算方法"等复合问题RAG(检索增强生成)技术的革命性在于将语义检索与大语言模型结合:用户问
- DeepSeek 实战项目:构建专业领域智能问答系统
XQR.小白
DeepSeek实战项目精讲python人工智能
目录1.项目概述与背景2.环境准备与模型部署3.专业知识库构建5.交互式界面开发6.系统优化与扩展7.项目部署与运维项目总结与展望1.项目概述与背景在当今信息爆炸的时代,专业领域的知识获取面临着信息过载和检索效率低下的问题。本项目旨在利用DeepSeek模型构建一个专业领域的智能问答系统,帮助用户快速准确地获取所需信息。通过本项目,你将学习如何:部署和配置DeepSeek大语言模型构建专业领域知识
- 【AI大模型】数据处理
用心分享技术
AI大模型人工智能oracle数据库
一、源文档读取为构建我们的本地知识库,我们需要对以多种类型存储的本地文档进行处理,读取本地文档并通过前文描述的Embedding方法将本地文档的内容转化为词向量来构建向量数据库。在本节中,我们以一些实际示例入手,来讲解如何对本地文档进行处理。二、数据读取1.PDF文档我们可以使用LangChain的PyMuPDFLoader来读取知识库的PDF文件。PyMuPDFLoader是PDF解析器中速度最
- DeepSeek使用指南:普通人逆袭的5大核心技巧
傻啦嘿哟
DeepSeek新手全攻略自然语言处理
目录引言:AI工具如何成为普通人的"外挂"?一、精准提问术:让AI输出价值翻倍二、记忆管理术:打造你的AI知识库三、创意激发术:突破思维定式四、效率革命术:重构工作流程五、认知升级术:建立AI思维框架进阶技巧:打造个人AI工作流结语:AI时代的认知突围引言:AI工具如何成为普通人的"外挂"?在人工智能普及的今天,掌握工具的使用深度决定了效率差距。DeepSeek作为新一代大语言模型,其核心价值不在
- 大模型驱动核工业智能化的技术架构与核心突破
Deepoch
人工智能创业创新语言模型
从数据闭环到自主决策,解码核能系统的AI技术演进路径Deepoc大模型通过构建多维度技术体系,在知识结构化处理、逻辑推理优化及多模态验证机制等方向取得关键技术突破,有效提升生成内容与行业知识库的匹配度。经第三方测试验证,在装备制造、能源管理等场景中,其生成内容的可验证性指标较基线模型提升62%,关键参数失真率控制在0.3%阈值内。通过构建行业知识蒸馏框架,该模型已形成覆盖12个垂直领域的定制化解决
- lobechat搭建本地知识库
Nnbwbyhxy
人工智能
本文中,我们提供了完全基于开源自建服务的DockerCompose配置,你可以直接使用这份配置文件来启动LobeChat数据库版本,也可以对之进行修改以适应你的需求。我们默认使用MinIO作为本地S3对象存储服务,使用Casdoor作为本地鉴权服务。快速启动为方便快速上手,这一章使用docker-compose/local目录中的docker-compose.yml配置文件,启动后的LobeCha
- 2025-微调 Qwen3 实战教程
一、概述unsloth微调Qwen3模型提供显著优势:训练速度提高2倍,VRAM使用减少70%,支持8倍长的上下文。Qwen3–30B-A3B仅需17.5GBVRAM即可运行。unsloth的Dynamic2.0量化技术保证了高精度,同时支持原生128K上下文长度。Qwen3模型具有思考模式和非思考模式,适用于不同复杂度的任务。微调后的模型可用于法律文档分析、定制知识库构建等领域,能够处理特定领域
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 大模型实战干货:如何基于LangChain 在本地构建一个可运行的 RAG 系统(附完整代码)
勤奋的知更鸟
PythonAI大模型AI工具langchain
什么是RAGRAG(Retrieval-AugmentedGeneration,检索增强生成)是一种将语言模型(如ChatGPT)与外部知识库结合的技术,使其在生成回答时能够调用真实知识来源,而不仅依赖模型本身的参数记忆。LangChain是一个构建大语言模型(LLM)应用的强大框架,提供了连接向量数据库、检索器、提示模板和LLM的模块化工具链。RAG系统结构图项目依赖安装pipinstallla
- 互联网大厂Java求职面试:AI与大模型技术下的RAG系统架构设计与性能优化
在未来等你
Java场景面试宝典AI技术编程JavaSpring
【互联网大厂Java求职面试:AI与大模型技术下的RAG系统架构设计与性能优化】文章内容面试官开场白技术总监(李明):“郑薪苦,欢迎来到今天的面试。我是李明,负责我们公司的AI平台架构设计。今天我们将围绕一个非常前沿的场景——基于RAG(Retrieval-AugmentedGeneration)系统的架构设计与性能优化进行深入探讨。这个场景在当前的AI应用中非常重要,尤其是在企业知识库与大模型深
- 检索增强生成(RAG)领域关键数据集综述:分类、挑战与展望
致Great
分类数据挖掘人工智能
检索增强生成(RAG)领域关键数据集综述:分类、挑战与展望摘要检索增强生成(RAG)通过融合外部知识库与大型语言模型,已成为解决知识密集型自然语言处理(NLP)任务的关键范式。高质量、多样化的数据集是推动RAG技术发展、评估模型能力和揭示其局限性的基石。本文旨在对RAG领域的关键数据集进行一次系统性的梳理与全景分析。我们基于对30篇核心研究论文的分析,提炼并审查了148个相关数据集,并首次提出一个
- AI加持|博睿数据公众号正式升级运维智能体!
运维
即日起,「博睿宏远」&「bonree博睿数据」公众号正式接入腾讯元器AI智能体,24小时在线“有问必答”,为您开启智能交互新体验!精准解答难题秒级内容定位精准解答难题。无论是在工作中遇到技术难题,或是对博睿数据的产品及解决方案有疑问,只需输入您的问题,智能体依托腾讯混元大模型,都能秒级从博睿数据庞大的知识库检索出您所需要的信息,条理清晰地为您输出相关技术要点,并附上原文链接,方便深度查阅。极速内容
- Linux 文件与目录管理
咖啡续命又一天
Linuxlinux服务器运维
以下是关于Linux文件与目录管理的常用命令及其详细讲解,结合了知识库中的信息,帮助您高效管理文件和目录。一、查看文件与目录1.ls(列出目录内容)功能:显示当前目录下的文件和子目录。常用选项:ls:列出当前目录下的文件和目录(不带详细信息)。ls-l:以详细格式显示文件信息(权限、所有者、大小、修改时间等)。ls-a:显示所有文件(包括隐藏文件,以.开头的文件)。ls-h:以人类可读的格式显示文
- 华为OD-2024年E卷-中文分词模拟器[200分] -- python
问题描述:给定一个连续不包含空格的字符串,该字符串仅包含英文小写字母及英文标点符号(逗号、分号、句号),同时给定词库,对该字符串进行精确分词。说明:精确分词:字符串分词后,不会出现重叠。即"ilovechina",不同词库可分割为"i,love,china","ilove,china",不能分割出现重叠的"i,ilove,china",i出现重叠标点符号不成词,仅用于断句词库:根据外部知识库统计出
- LangChain、RAG、Agent是什么
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain语言模型人工智能算法自然语言处理
LangChain、RAG、Agent是什么在本地部署基于DeepSeek-R1模型的商用级知识库系统,旨在帮助开发者搭建智能知识库,提升企业智能化水平。背景与技术概述:随着大语言模型和RAG技术发展,AI知识库广泛应用于各行业,但传统信息管理系统存在问题,大模型也有“幻觉”现象。RAG技术将信息检索与生成模型结合,能缓解“幻觉”,而Agent智能体和LangChain框架可满足复杂业务需求。本地
- 在GitBook中使用Langchain进行文档加载
##技术背景介绍GitBook是一个现代化的文档平台,支持团队对产品、内部知识库及API进行详细记录。为了提高文档的可访问性,许多开发者选择将GitBook与Langchain结合使用来处理文档加载和数据流。##核心原理解析Langchain是一个强大的Python库,用于构建语言模型驱动的应用程序。在文档加载部分,Langchain提供了`GitbookLoader`模块,可以通过GitBook
- 大模型RAG高阶面试指南:第一章:RAG绪论
强化学习曾小健3
大模型RAG高阶面试指南人工智能深度学习
第一章:RAG绪论1.1RAG的定义、背景与核心思想检索增强生成(RetrievalAugmentedGeneration,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。它通过在生成过程中动态检索相关信息来增强大型语言模型的能力,从而提供更准确、更及时、更可靠的回答。RAG的核心思想是将"参数化知识"(存储在模型参数中的知识)与"非参数化知识"(存储在外部知识库中的知识)相结合,通过检
- 2025主流AI智能客服系统技术对比分析:RAG、知识库、私有化部署能力全解读
bbsh2099
方案与思考人工智能
近年来,伴随大模型能力的发展和自然语言处理技术的演进,AI智能客服系统正逐步从“问答工具”演变为企业和机构的服务中枢。在政务、医疗、教育、金融、电商等行业,越来越多的信息门户和业务系统选择将AI客服作为数字化转型的重要一环。本文从技术实现角度出发,分析国内数个典型AI客服系统解决方案,重点关注其知识库结构、问答能力、国产化兼容情况、私有化部署模式及场景落地效果,供开发者、集成商与技术选型人员参考。
- 【1.2 JVM内存模型知识库 - 轻松理解版】
JVM内存模型知识库-轻松理解版一、JVM内存模型顺口溜经典记忆口诀堆栈方法三兄弟,线程共享要分清堆里对象住得多,新生老年分两区栈帧方法调用链,局部变量操作栈方法区里存什么?类信息常量池程序计数指令跑,本地方法有专栈直接内存虽然好,别忘GC管不到升级版记忆歌谣Java虚拟机内存,好比一座大房子堆区是个大仓库,对象实例都住这栈区像个办公楼,每层一个方法组方法区是图书馆,类的信息静静放PC寄存器是导航
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。