- AnythingLLM教程系列之 12 AnythingLLM 上的 Ollama 与 MySQL+PostgreSQL
知识大胖
NVIDIAGPU和大语言模型开发教程mysqlpostgresql数据库anythingllmollama
简介一款全栈应用程序,可让您将任何文档、资源或内容转换为上下文,任何LLM都可以在聊天期间将其用作参考。此应用程序允许您选择要使用的LLM或矢量数据库,并支持多用户管理和权限。本文将介绍如何在AnythingLLM上将Ollama与MySQL+PostgreSQL连接起来。系列文章如何安装《无需任何代码构建自己的大模型知识库:AnythingLLM最易于使用的一体化AI应用程序,可以执行RAG、A
- AnythingLLM教程系列之 09 AnythingLLM 支持自定义音频转录提供程序
知识大胖
NVIDIAGPU和大语言模型开发教程llama3anythingllmllm
什么是AnythingLLM?AnythingLLM是最易于使用的一体化AI应用程序,可以执行RAG、AI代理等操作,且无需任何代码或基础设施难题。您需要为您的企业或组织提供一款完全可定制、私有且一体化的AI应用程序,该应用程序基本上是一个具有许可的完整ChatGPT,但具有任何LLM、嵌入模型或矢量数据库。如何安装《无需任何代码构建自己的大模型知识库:AnythingLLM最易于使用的一体化AI
- AnythingLLM教程系列之 04 AnythingLLM 允许您以正确的格式导出聊天日志,以构建 GPT-3.5 和 OpenAI 上其他可用模型的微调模型(教程含安装步骤)
知识大胖
NVIDIAGPU和大语言模型开发教程llama3aianythinllmllama
什么是AnythingLLM?AnythingLLM是最易于使用的一体化AI应用程序,可以执行RAG、AI代理等操作,且无需任何代码或基础设施难题。您需要为您的企业或组织提供一款完全可定制、私有且一体化的AI应用程序,该应用程序基本上是一个具有许可的完整ChatGPT,但具有任何LLM、嵌入模型或矢量数据库。如何安装《无需任何代码构建自己的大模型知识库:AnythingLLM最易于使用的一体化AI
- 财政业务知识库目录分类实践
alankuo
人工智能
财政业务知识库的目录分类是实现知识有序管理、高效检索和精准应用的核心环节,需结合财政业务的专业性、系统性和动态性,兼顾业务逻辑、用户需求和管理实践。以下从分类原则、核心框架、实践要点三个方面,结合财政业务特点展开具体实践说明。一、财政业务知识库目录分类的核心原则在实践中,目录分类需遵循以下原则,确保分类逻辑清晰、实用高效:业务关联性:以财政核心业务流程和管理领域为基础,确保分类与实际工作场景紧密贴
- 从数据到智慧:AI原生知识库构建的完整技术栈解析
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据AI-native大数据ai
从数据到智慧:AI原生知识库构建的完整技术栈解析关键词AI原生知识库、知识图谱、向量数据库、大语言模型、RAG技术、知识工程、智能问答系统摘要在人工智能飞速发展的今天,构建能够真正理解、组织和应用知识的系统已成为企业数字化转型的核心竞争力。本文将深入剖析AI原生知识库的完整技术栈,从数据采集与预处理,到知识表示与建模,再到存储架构与检索增强生成技术,全方位解读如何将原始数据转化为可行动的智慧。我们
- 1. RAG 权威指南:从本地实现到生产级优化的全面实践
javascript
1.RAG权威指南:从本地实现到生产级优化的全面实践大型语言模型(LLM)的知识受限于其训练数据,这是一个众所周知的痛点。检索增强生成(RAG)技术应运而生,它如同一座桥梁,将这些强大的基础模型与企业所需的实时、动态信息连接起来,极大地拓展了AI的能力边界。RAG将LLM从一个封闭的知识库,转变为一个能够提供准确、实时且紧密贴合上下文的动态工具。本文将作为你的向导,带你深入探索RAG的世界。我们首
- 基于Deepseek+RAG构建企业知识库:文档预处理与数据整理
大势下的牛马
搭建本地gpt人工智能RAGDeepseek知识库
在当今数字化时代,企业知识库的构建对于知识管理和高效决策至关重要。基于Deepseek+RAG(Retrieval-AugmentedGeneration)技术构建企业知识库,能够有效整合企业内外部知识资源,实现知识的快速检索和精准应用。而在这一过程中,文档预处理与数据整理是关键的基础环节,直接关系到知识库的质量和后续应用效果。一、文件预处理:格式转换与数据清洗(一)支持格式与转换要求优先格式:在
- AI时代下如何学习前端之第2篇:前端开发者的“AI焦虑“:被替代还是被赋能?
指尖动听知识库
AI时代下如何学习前端人工智能前端
文/指尖动听知识库-胖胖文章为付费内容,商业行为,禁止私自转载及抄袭,违者必究!!!文章专栏:AI时代下如何学习前端“每当我看到AI生成完美代码时,都会想:我的工作还有价值吗?”——一位有5年经验的前端开发者如果你读了上一篇《ChatGPT问世后ÿ
- 17 - Debian如何配置vsftpd(2)系统用户验证
网络傅老师
【知识库】Debian12系列debian服务器运维linuxvsftp
作者:网络傅老师特别提示:未经作者允许,不得转载任何内容。违者必究!Debian如何配置vsftpd(2)系统用户验证《傅老师Debian知识库系列之17》——原创==前言==傅老师Debian小知识库特点:1、最小化拆解Debian实用技能;<
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 6. ETL Pipeline-SpringAI实战
起凡7
SpringAIetl嵌入式实时数据库aispring语言模型
ETLPipelineETL是提取、转换、加载的缩写,从原始的文档到数据库需要经历提取(.doc、.ppt、.xlsx等)、转换(数据结构化、清理数据、数据分块)、写入向量数据库。这个过程可以进行多种处理,确保最后的数据适合AI问答。SpringAI提供了ETL框架。它是搭建知识库框架的基石。框架介绍DocumentReader:文档读取器,读取文档,比如PDF、Word、Excel等。如:Jso
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- Coze 基础认知:知识库功能深度解析与实战应用指南
charles666666
产品经理
在当今数字化时代,企业的知识管理能力已成为其核心竞争力之一。然而,许多企业仍面临着知识散落各处、查找困难、信息过时、新员工上手慢、专家经验流失、重复解答相同问题、客户支持效率低等知识管理痛点。在智能化时代,传统知识管理方式的局限性和高昂成本逐渐凸显。而Coze知识库凭借着强大的功能和优势,成为了企业解决这些痛点的关键。一、精准定位问题企业的知识往往分散在不同的文档、邮件、网页、数据库等各个角落,员
- Python Pandas库超详细教程:从入门到精通实战指南
stormsha
Pythonpythonpandas开发语言python3.11数据分析
欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:「stormsha的主页」,「stormsha的知识库」持续学习,不断总结,共同进步,为了踏实,做好当下事儿~非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。✨✨欢迎订阅本专栏✨✨TheStart点点关注,收藏不迷路文章目录Pyt
- 【LLM】Llama-Index 架构
FOUR_A
LLMllama架构
数据源(DataSources)PDF/文档数据库API网页音频/视频知识库自定义源数据连接器(DataConnectors)用于从各种数据源提取和加载数据,以便进行索引和查询。1.SimpleDirectoryReader含义:简单目录读取器。功能:主要用于读取本地文件系统中的目录内容。它可以列出目录中的文件和子目录,通常用于文件管理或数据预处理阶段。例如,在一个数据处理项目中,你可能需要列出某
- 阿里云瑶池数据库 Data Agent for Meta 正式发布,让 AI 更懂你的业务!
数据库观点资讯人工智能
背景随着生成式人工智能(GenerativeAI)从概念验证迈向规模化商业落地,AIAgent已成为企业核心业务流程的重要组成部分。然而,当模型调用日益便捷时,核心痛点已不再是模型本身,而是集中在一个关键要素上:数据。AIAgent的落地瓶颈已从技术能力转向高质量、高相关性、安全合规的数据供给。企业面临的核心挑战在于:数据孤岛导致知识库分散,通用大模型难以理解专业业务传统数据管理依赖人工开发维护,
- 在Linux环境下从0私有化部署Dify
在Linux环境下从0搭建Dify准备工作系统环境私有化部署下载Dify代码ZIP包启动Dify启动Docker容器访问Dify本地环境服务器环境准备工作因工作需要私有化部署公司内部的知识库,研究了一下准备采用Dify+RAG的方式实现,以下是具体步骤。系统环境服务器配置:官方建议2核4G以上;Liunx版本:RockyLinuxrelease9.4;Docker版本:28.1.1;Dify版本:
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- Assistant API的原理及应用
赛丽曼
人工智能chatgpt
什么是AssistantsAPI?**发布日期:**2023年11月6日,OpenAI在开发者大会上发布了AssistantsAPI——一款面向开发者的工具,用于在应用中构建AI助手。✅它可以做什么?AssistantsAPI允许开发者构建智能助手,这些助手可通过:instructions(指令):设定助手行为;models(模型):指定使用的GPT模型;tools(工具):调用代码解释器、知识库
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 大模型 AI智能体Coze知识库从使用到实战详解
非著名架构师
大模型知识文档人工智能Coze知识库
一、Coze知识库核心价值解析1.1知识库技术架构创新Coze知识库采用四层混合架构设计,在2025年大模型应用中展现出独特优势:存储层:支持向量数据库(Qdrant)+图数据库(Neo4j)双引擎处理层:集成PDF/PPT/Excel等23种文件解析器检索层:混合检索算法(BM25+稠密检索+语义路由)应用层:RAG(检索增强生成)优化接口与传统方案相比,查询准确率提升42%,特别擅长处理:专业
- 浙江省经信厅数据算力与基础设施处处长庞为兴带队调研景联文科技,共探工业数据驱动智造新路径!
景联文科技
科技
7月2日上午,浙江省经信厅数据算力与基础设施处处长庞为兴、产业数字化处处长张君等一行领导带队莅临景联文科技调研指导工作,景联文科技CEO刘云涛参加调研并做汇报讲解,双方就数据服务公司业务,工业高质量数据集建设及政企合作方向展开深入探讨。景联文科技作为“懂模型、懂业务”的AI数据服务商,业务模式涵盖按需标注、预置数据集供应及平台部署服务,并积极汇聚公共数据资源,携手华为构建语料知识库,赋能数据标注产
- LangChain4j如何自定义文档转换器实现数据清洗?
古斯塔夫歼星炮
LangChain4j提供了3种RAG(Retrieval-AugmentedGeneration,检索增强生成)实现,我们通常在原生或高级的RAG实现中,要对数据进行清洗,也就是将外接知识库中的原数据进行噪音去除,留下有价值的信息。例如在带有HTML标签的文本中,HTML标签就是噪音,他对于搜索结果是没有任何帮助,甚至会影响查询结果的,因此我们就需要将HTML标签进行清除。那问题来了,怎么进行数
- Dify搭建私有知识库指南
挑战者666888
AI模型应用实战人工智能自然语言处理机器学习
系列文章目录CentOS系统高效部署Dify全攻略文章目录系列文章目录Dify搭建私有知识库指南一、引言二、环境准备与基础配置(含Linux命令)1.硬件要求2.软件依赖安装(Linux命令)3.安装Dify(Docker-compose部署)4.初始化设置三、数据接入与知识库构建(含实战案例)1.数据源接入示例2.数据预处理3.向量化存储配置实战案例:企业产品手册知识库四、检索与增强功能实现1.
- Qwen3 Reranker模型可以微调吗?
修昔底德
AI顿悟之旅人工智能LLMQwen3微调
可以,官方已经开放了完整的微调代码与训练范式,甚至推荐用LoRA/QLoRA做参数高效微调,把Qwen3-Reranker快速适配到你的专属知识库场景。下面总结一张总览表,然后分步骤讲怎样落地。说明是否支持微调✅支持(Apache-2.0许可,模型权重可商用)推荐方法LoRA/QLoRA(只训练几百万参数即可)可微调尺寸0.6B、4B、8B(0.6B单卡24GB就够;4B/8B建议多卡或Deeps
- AI Infra:Airweave,让 AI agent 打开 APP 的数据黑盒
sluke
原创陆蔚青平行记陆1、项目概述Airweave是一个开源工具平台,致力于将各类应用、数据库和文档存储内容,转换为可供AIAgent进行语义搜索的知识库。让我想起很久以前的Deeplink。它通过标准化接口(RESTAPI或MCP)输出搜索能力,整体流程涵盖授权接入、内容提取、向量嵌入以及语义查询等模块。正如它的官方网站所说:Airweave-TurnAppsIntoAgent-ReadyKnowl
- 从文档海洋到智能问答:用大模型和RAG打造下一代企业知识库的实战之路
电脑能手
人工智能算法语言模型深度学习python
从文档海洋到智能问答:用大模型和RAG打造下一代企业知识库的实战之路摘要:在信息爆炸的今天,企业内部文档(如SOP、技术手册、FAQ)数量激增,传统的关键词搜索常常让我们在“文档海洋”中迷失。本文将分享一次从0到1的实战探索,讲述如何利用大语言模型(LLM)和检索增强生成(RAG)技术,将静态、孤立的知识库,重塑为一个能“思考”和“对话”的智能问答系统。我们将从理念澄清、技术选型、代码实战到未来展
- GraphRAG革命性突破!美国Cedars-Sinai医疗中心揭秘:知识增强大模型如何重塑阿尔茨海默病基因研究与治疗?
DeepSeek-大模型系统教程
人工智能大模型chatgpt语言模型ai大模型学习大模型教程
摘要:随着阿尔茨海默病患者人数不断攀升,Cedars-Sinai医学中心通过知识图谱和AI技术,打造了AlzKB阿尔茨海默病知识库,用以推动新型病因和药物的发现。本文详解这些前沿工具如何结合,赋能专业人士实现高效科研转化,为认知障碍领域带来突破正文据估计,690万65岁及以上的美国人患有阿尔茨海默病。如果没有重大的医学突破,预计到2060年,美国这一数字将上升到1380万,到2050年全球将上升到
- Python, C++开发社会工作人员学习手册APP
Geeker-2025
pythonc++
#社会工作人员学习手册APP设计方案##系统架构设计```移动端(Flutter/ReactNative)|RESTAPI/gRPC|Go核心服务(Gin/Echo)←───PythonAI服务(FastAPI)|(学习路径规划/智能问答)|Rust高性能模块(数据处理/安全)|PostgreSQL(知识库+用户数据)|Redis(缓存+实时协作)|MinIO(学习资源存储)```##技术分工与优
- 当知识库、数据库和大模型组成“三体舰队”:智能体的宇宙级战斗力解析
芯作者
DD:计算机科学领域人工智能
如果你以为智能体只是个会聊天的“人工智障”,那你可能错过了一场AI界的“三体文明”进化史。今天我们就来拆解智能体背后的“三体舰队”——知识库、数据库与大模型,看看这三个看似普通的组件,如何组合成能上天入地的超级智能体!一、智能体里的“三体文明”揭秘1.1知识库:AI界的移动图书馆如果把智能体比作学霸,那知识库就是它随身携带的量子速读版百科全书。不同于传统数据库的刻板,知识库玩的是三大黑科技:记忆折
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。