以太坊源码深入分析(6)-- 以太坊P2P协议接收广播的处理和Fetcher源码分析

上一节主要讲了Ethereum服务和以太坊P2P协议通讯模块ProtocolManager的初始化和启动,以及以太坊通讯协议如何广播给其他的网络节点。
这一节讲讲,以太坊通讯协议如何处理接收到的广播消息。以及fetcher怎么工作。


一,ProtocolManager接收网络节点广播消息

首先看看p2p.Protocol的结构
type Protocol struct {
	Name string
	Version uint
	Length uint64

	Run func(peer *Peer, rw MsgReadWriter) error

	NodeInfo func() interface{}

	PeerInfo func(id discover.NodeID) interface{}
}
上一节ProtocolManager初始化的时候会实例化一个p2p.Protocol,并实

现了Protocol里面的三个成员变量和三个成员函数指针。

manager.SubProtocols = append(manager.SubProtocols, p2p.Protocol{
			Name:    ProtocolName,
			Version: version,
			Length:  ProtocolLengths[i],
			Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
				peer := manager.newPeer(int(version), p, rw)
				select {
				case manager.newPeerCh <- peer:
					manager.wg.Add(1)
					defer manager.wg.Done()
					return manager.handle(peer)
				case <-manager.quitSync:
					return p2p.DiscQuitting
				}
			},
			NodeInfo: func() interface{} {
				return manager.NodeInfo()
			},
			PeerInfo: func(id discover.NodeID) interface{} {
				if p := manager.peers.Peer(fmt.Sprintf("%x", id[:8])); p != nil {
					return p.Info()
				}
				return nil
			},
		})
这三个函数指针实质是注入p2p server的回调,用于处理网络中其他节点的广播通知、获取本以太坊Node 的info、本地节点的info。
Run方法尤其重要,当发现网络中新的p2p节点时候就会执行Run方法,这时候会执行manager.handle(peer)。
func (pm *ProtocolManager) handle(p *peer) error {
	if pm.peers.Len() >= pm.maxPeers {
		return p2p.DiscTooManyPeers
	}
	p.Log().Debug("Ethereum peer connected", "name", p.Name())


	// Execute the Ethereum handshake
	var (
		genesis = pm.blockchain.Genesis()
		head    = pm.blockchain.CurrentHeader()
		hash    = head.Hash()
		number  = head.Number.Uint64()
		td      = pm.blockchain.GetTd(hash, number)
	)
	if err := p.Handshake(pm.networkId, td, hash, genesis.Hash()); err != nil {
		p.Log().Debug("Ethereum handshake failed", "err", err)
		return err
	}
	if rw, ok := p.rw.(*meteredMsgReadWriter); ok {
		rw.Init(p.version)
	}
	// Register the peer locally
	if err := pm.peers.Register(p); err != nil {
		p.Log().Error("Ethereum peer registration failed", "err", err)
		return err
	}
	defer pm.removePeer(p.id)


	// Register the peer in the downloader. If the downloader considers it banned, we disconnect
	if err := pm.downloader.RegisterPeer(p.id, p.version, p); err != nil {
		return err
	}
	// Propagate existing transactions. new transactions appearing
	// after this will be sent via broadcasts.
	pm.syncTransactions(p)


	// If we're DAO hard-fork aware, validate any remote peer with regard to the hard-fork
	if daoBlock := pm.chainconfig.DAOForkBlock; daoBlock != nil {
		// Request the peer's DAO fork header for extra-data validation
		if err := p.RequestHeadersByNumber(daoBlock.Uint64(), 1, 0, false); err != nil {
			return err
		}
		// Start a timer to disconnect if the peer doesn't reply in time
		p.forkDrop = time.AfterFunc(daoChallengeTimeout, func() {
			p.Log().Debug("Timed out DAO fork-check, dropping")
			pm.removePeer(p.id)
		})
		// Make sure it's cleaned up if the peer dies off
		defer func() {
			if p.forkDrop != nil {
				p.forkDrop.Stop()
				p.forkDrop = nil
			}
		}()
	}
	// main loop. handle incoming messages.
	for {
		if err := pm.handleMsg(p); err != nil {
			p.Log().Debug("Ethereum message handling failed", "err", err)
			return err
		}
	}
}
首先根远程网络节点握手Handshake()方法

func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash) error {
	// Send out own handshake in a new thread
	errc := make(chan error, 2)
	var status statusData // safe to read after two values have been received from errc


	go func() {
		errc <- p2p.Send(p.rw, StatusMsg, &statusData{
			ProtocolVersion: uint32(p.version),
			NetworkId:       network,
			TD:              td,
			CurrentBlock:    head,
			GenesisBlock:    genesis,
		})
	}()
	go func() {
		errc <- p.readStatus(network, &status, genesis)
	}()
	timeout := time.NewTimer(handshakeTimeout)
	defer timeout.Stop()
	for i := 0; i < 2; i++ {
		select {
		case err := <-errc:
			if err != nil {
				return err
			}
		case <-timeout.C:
			return p2p.DiscReadTimeout
		}
	}
	p.td, p.head = status.TD, status.CurrentBlock
	return nil
}
把本地节点的状态发送给远程节点包括ProtocolVersion、NetworkId、TD、CurrentBlock、GenesisBlock,然后读取返回的状态数据,并做对比,如果都满足条件就握手成功。

然后将这个网络节点加入到缓存的节点列表中pm.peers.Register(p)。
把本地的产生的未打包的交易发送给网络节点。
验证Dao 硬分叉,如果超时则从缓存节点列表中删除这个网络节点。
最后进入pm.handleMsg(p)主循环,不停的监听网络节点发过来的消息,并处理。
目前以太坊节点可以接受如下网络消息:
const (
	// Protocol messages belonging to eth/62
	StatusMsg          = 0x00
	NewBlockHashesMsg  = 0x01
	TxMsg              = 0x02
	GetBlockHeadersMsg = 0x03
	BlockHeadersMsg    = 0x04
	GetBlockBodiesMsg  = 0x05
	BlockBodiesMsg     = 0x06
	NewBlockMsg        = 0x07

	// Protocol messages belonging to eth/63
	GetNodeDataMsg = 0x0d
	NodeDataMsg    = 0x0e
	GetReceiptsMsg = 0x0f
	ReceiptsMsg    = 0x10
)
pm.handleMsg(p)很长,不一一分析。纯粹是每个消息一个case处理。写这个模块的作者是不是可以考虑重构一下代码,这么核心的代码模块,可读性和可扩展性都太差了。

二,Fetcher分析,之Notify()

fetcher是用来辅助同步区块数据的,记录各个区块头和区块体的同步状态,但它并不做真正下载区块数据的事情,下载的事情交由downloader来做。那fetcher具体是怎么工作的呢?

我们先看看pm.handleMsg 在收到 NewBlockHashesMsg广播通知的处理代码:

case msg.Code == NewBlockHashesMsg:
		var announces newBlockHashesData
		if err := msg.Decode(&announces); err != nil {
			return errResp(ErrDecode, "%v: %v", msg, err)
		}
		// Mark the hashes as present at the remote node
		for _, block := range announces {
			p.MarkBlock(block.Hash)
		}
		// Schedule all the unknown hashes for retrieval
		unknown := make(newBlockHashesData, 0, len(announces))
		for _, block := range announces {
			if !pm.blockchain.HasBlock(block.Hash, block.Number) {
				unknown = append(unknown, block)
			}
		}
		for _, block := range unknown {
			pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies)
		}
从广播通知里会获取到一个newBlockHashesData的列表。newBlockHashesData只包括block的hash值和block的number值。

然后每个newBlockHashesData调用pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies)方法,除了传入block的hash值和block的number值,还需要传入当前的时间戳,peer.go的两个函数指针。

func (f *Fetcher) Notify(peer string, hash common.Hash, number uint64, time time.Time,
	headerFetcher headerRequesterFn, bodyFetcher bodyRequesterFn) error {
	block := &announce{
		hash:        hash,
		number:      number,
		time:        time,
		origin:      peer,
		fetchHeader: headerFetcher,
		fetchBodies: bodyFetcher,
	}
	select {
	case f.notify <- block:
		return nil
	case <-f.quit:
		return errTerminated
	}
}

Notify()方法把传进来的参数拼成一个announce对象,然后send给f.notify。fetcher的loop()主回路里f.notify receive 到这个notification, 进行处理。

case notification := <-f.notify:
			// A block was announced, make sure the peer isn't DOSing us
			propAnnounceInMeter.Mark(1)


			count := f.announces[notification.origin] + 1
			if count > hashLimit {
				log.Debug("Peer exceeded outstanding announces", "peer", notification.origin, "limit", hashLimit)
				propAnnounceDOSMeter.Mark(1)
				break
			}
			// If we have a valid block number, check that it's potentially useful
			if notification.number > 0 {
				if dist := int64(notification.number) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist {
					log.Debug("Peer discarded announcement", "peer", notification.origin, "number", notification.number, "hash", notification.hash, "distance", dist)
					propAnnounceDropMeter.Mark(1)
					break
				}
			}
			// All is well, schedule the announce if block's not yet downloading
			if _, ok := f.fetching[notification.hash]; ok {
				break
			}
			if _, ok := f.completing[notification.hash]; ok {
				break
			}
			f.announces[notification.origin] = count
			f.announced[notification.hash] = append(f.announced[notification.hash], notification)
			if f.announceChangeHook != nil && len(f.announced[notification.hash]) == 1 {
				f.announceChangeHook(notification.hash, true)
			}
			if len(f.announced) == 1 {
				f.rescheduleFetch(fetchTimer)
			}
1,将收到的不满足条件的通知都丢弃掉,如果在f.fetching 状态列表里和f.completing 状态列表里,也直接返回。接着更新notification.origin 这个节点的announces 数量,添加到f.announced 等待fetch的表里。
2,如果len(f.announced[notification.hash]) == 1 说明f.announced只有这一个通知,则调用f.announceChangeHook。

3,如果len(f.announced) == 1 也说明只有一个通知,则启动fetchTimer的调度。

case <-fetchTimer.C:
			// At least one block's timer ran out, check for needing retrieval
			request := make(map[string][]common.Hash)


			for hash, announces := range f.announced {
				if time.Since(announces[0].time) > arriveTimeout-gatherSlack {
					// Pick a random peer to retrieve from, reset all others
					announce := announces[rand.Intn(len(announces))]
					f.forgetHash(hash)


					// If the block still didn't arrive, queue for fetching
					if f.getBlock(hash) == nil {
						request[announce.origin] = append(request[announce.origin], hash)
						f.fetching[hash] = announce
					}
				}
			}
			// Send out all block header requests
			for peer, hashes := range request {
				log.Trace("Fetching scheduled headers", "peer", peer, "list", hashes)


				// Create a closure of the fetch and schedule in on a new thread
				fetchHeader, hashes := f.fetching[hashes[0]].fetchHeader, hashes
				go func() {
					if f.fetchingHook != nil {
						f.fetchingHook(hashes)
					}
					for _, hash := range hashes {
						headerFetchMeter.Mark(1)
						fetchHeader(hash) // Suboptimal, but protocol doesn't allow batch header retrievals
					}
				}()
			}
			// Schedule the next fetch if blocks are still pending
			f.rescheduleFetch(fetchTimer)
1,首先遍历f.announced,如果超过了arriveTimeout-gatherSlack这个时间,把这个hash对应在fetcher里面的状态都清了。
这里随机拿这个announces里面任意一个announce,为啥随机取一个呢?因为都是同一个block的hash,这个hash下的哪一个announce都是一样的。
如果发现超时了还没有没有获取到这个hash的block,则把这个announce加到request列表中,同时重新把announce放到f.fetching状态列表。
2,然后遍历request列表,request列表里面的每个网络节点过来的所有的block的hash,都会调用fetchHeader(hash)方法来获取header数据。
这个fetchHeader(hash)方法是pm.fetcher.Notify传进来的,peer.go
里面的一个全局方法。
3, 这时候NewBlockHashesMsg 的fetcher处理就结束了,最后再启动fetchTimer的调度。

三,Fetcher分析, 之FilterHeaders()

fetchHeader(hash)方法,调用了peer.go 里面的全局方法RequestOneHeader(hash common.Hash)  Send给网络节点一个GetBlockHeadersMsg 消息。

然后pm.handleMsg 收到 BlockHashesMsg广播通知

case msg.Code == BlockHeadersMsg:
		// A batch of headers arrived to one of our previous requests
		var headers []*types.Header
		if err := msg.Decode(&headers); err != nil {
			return errResp(ErrDecode, "msg %v: %v", msg, err)
		}
		// If no headers were received, but we're expending a DAO fork check, maybe it's that
		if len(headers) == 0 && p.forkDrop != nil {
			// Possibly an empty reply to the fork header checks, sanity check TDs
			verifyDAO := true


			// If we already have a DAO header, we can check the peer's TD against it. If
			// the peer's ahead of this, it too must have a reply to the DAO check
			if daoHeader := pm.blockchain.GetHeaderByNumber(pm.chainconfig.DAOForkBlock.Uint64()); daoHeader != nil {
				if _, td := p.Head(); td.Cmp(pm.blockchain.GetTd(daoHeader.Hash(), daoHeader.Number.Uint64())) >= 0 {
					verifyDAO = false
				}
			}
			// If we're seemingly on the same chain, disable the drop timer
			if verifyDAO {
				p.Log().Debug("Seems to be on the same side of the DAO fork")
				p.forkDrop.Stop()
				p.forkDrop = nil
				return nil
			}
		}
		// Filter out any explicitly requested headers, deliver the rest to the downloader
		filter := len(headers) == 1
		if filter {
			// If it's a potential DAO fork check, validate against the rules
			if p.forkDrop != nil && pm.chainconfig.DAOForkBlock.Cmp(headers[0].Number) == 0 {
				// Disable the fork drop timer
				p.forkDrop.Stop()
				p.forkDrop = nil


				// Validate the header and either drop the peer or continue
				if err := misc.VerifyDAOHeaderExtraData(pm.chainconfig, headers[0]); err != nil {
					p.Log().Debug("Verified to be on the other side of the DAO fork, dropping")
					return err
				}
				p.Log().Debug("Verified to be on the same side of the DAO fork")
				return nil
			}
			// Irrelevant of the fork checks, send the header to the fetcher just in case
			headers = pm.fetcher.FilterHeaders(p.id, headers, time.Now())
		}
		if len(headers) > 0 || !filter {
			err := pm.downloader.DeliverHeaders(p.id, headers)
			if err != nil {
				log.Debug("Failed to deliver headers", "err", err)
			}
		}

如果不是硬分叉的daoHeader,同时len(headers) == 1,则执行pm.fetcher.FilterHeaders(p.id, headers, time.Now())方法

func (f *Fetcher) FilterHeaders(peer string, headers []*types.Header, time time.Time) []*types.Header {
	log.Trace("Filtering headers", "peer", peer, "headers", len(headers))


	// Send the filter channel to the fetcher
	filter := make(chan *headerFilterTask)


	select {
	case f.headerFilter <- filter:
	case <-f.quit:
		return nil
	}
	// Request the filtering of the header list
	select {
	case filter <- &headerFilterTask{peer: peer, headers: headers, time: time}:
	case <-f.quit:
		return nil
	}
	// Retrieve the headers remaining after filtering
	select {
	case task := <-filter:
		return task.headers
	case <-f.quit:
		return nil
	}
}

send 一个filter 到f.headerFilter,fetcher的loop()主回路里f.headerFilter receive 到这个filter,进行处理。

case filter := <-f.headerFilter:
			// Headers arrived from a remote peer. Extract those that were explicitly
			// requested by the fetcher, and return everything else so it's delivered
			// to other parts of the system.
			var task *headerFilterTask
			select {
			case task = <-filter:
			case <-f.quit:
				return
			}
			headerFilterInMeter.Mark(int64(len(task.headers)))


			// Split the batch of headers into unknown ones (to return to the caller),
			// known incomplete ones (requiring body retrievals) and completed blocks.
			unknown, incomplete, complete := []*types.Header{}, []*announce{}, []*types.Block{}
			for _, header := range task.headers {
				hash := header.Hash()


				// Filter fetcher-requested headers from other synchronisation algorithms
				if announce := f.fetching[hash]; announce != nil && announce.origin == task.peer && f.fetched[hash] == nil && f.completing[hash] == nil && f.queued[hash] == nil {
					// If the delivered header does not match the promised number, drop the announcer
					if header.Number.Uint64() != announce.number {
						log.Trace("Invalid block number fetched", "peer", announce.origin, "hash", header.Hash(), "announced", announce.number, "provided", header.Number)
						f.dropPeer(announce.origin)
						f.forgetHash(hash)
						continue
					}
					// Only keep if not imported by other means
					if f.getBlock(hash) == nil {
						announce.header = header
						announce.time = task.time


						// If the block is empty (header only), short circuit into the final import queue
						if header.TxHash == types.DeriveSha(types.Transactions{}) && header.UncleHash == types.CalcUncleHash([]*types.Header{}) {
							log.Trace("Block empty, skipping body retrieval", "peer", announce.origin, "number", header.Number, "hash", header.Hash())


							block := types.NewBlockWithHeader(header)
							block.ReceivedAt = task.time


							complete = append(complete, block)
							f.completing[hash] = announce
							continue
						}
						// Otherwise add to the list of blocks needing completion
						incomplete = append(incomplete, announce)
					} else {
						log.Trace("Block already imported, discarding header", "peer", announce.origin, "number", header.Number, "hash", header.Hash())
						f.forgetHash(hash)
					}
				} else {
					// Fetcher doesn't know about it, add to the return list
					unknown = append(unknown, header)
				}
			}
			headerFilterOutMeter.Mark(int64(len(unknown)))
			select {
			case filter <- &headerFilterTask{headers: unknown, time: task.time}:
			case <-f.quit:
				return
			}
			// Schedule the retrieved headers for body completion
			for _, announce := range incomplete {
				hash := announce.header.Hash()
				if _, ok := f.completing[hash]; ok {
					continue
				}
				f.fetched[hash] = append(f.fetched[hash], announce)
				if len(f.fetched) == 1 {
					f.rescheduleComplete(completeTimer)
				}
			}
			// Schedule the header-only blocks for import
			for _, block := range complete {
				if announce := f.completing[block.Hash()]; announce != nil {
					f.enqueue(announce.origin, block)
				}
			}
1,遍历headerFilter里面的各个header,如果在 f.fetching状态列表,且不在f.fetched状态列表和 f.completing状态列表,就继续进行过滤,否则塞进unknown队列 发送给filter,FilterHeaders里面task 接收到filter,并作为FilterHeaders的返回值返回。
2,如果发现这个header的number和从f.fetching状态列表取到的announce的number不一样,说明有可能收到一个伪造的区块通知,此时就要把这个可能的伪造节点和可能的伪造的hash抛弃,另可错杀,不能放过。
3,如果本节点已经有这个hash的block,则放弃这个hash。如果这个block里面没有任何交易也没有任何叔区块,则把这个hash放入complete列表同时加入f.completing状态列表,否则放入incomplete列表。
4,在incomplete列表里面,且不在f.completing状态列表里,则加入f.fetched状态列表,启动completeTimer的调度。
5,在complete列表里面,同时也在f.completing状态列表,则调用f.enqueue(announce.origin, block)方法。

case <-completeTimer.C:
			// At least one header's timer ran out, retrieve everything
			request := make(map[string][]common.Hash)


			for hash, announces := range f.fetched {
				// Pick a random peer to retrieve from, reset all others
				announce := announces[rand.Intn(len(announces))]
				f.forgetHash(hash)


				// If the block still didn't arrive, queue for completion
				if f.getBlock(hash) == nil {
					request[announce.origin] = append(request[announce.origin], hash)
					f.completing[hash] = announce
				}
			}
			// Send out all block body requests
			for peer, hashes := range request {
				log.Trace("Fetching scheduled bodies", "peer", peer, "list", hashes)


				// Create a closure of the fetch and schedule in on a new thread
				if f.completingHook != nil {
					f.completingHook(hashes)
				}
				bodyFetchMeter.Mark(int64(len(hashes)))
				go f.completing[hashes[0]].fetchBodies(hashes)
			}
			// Schedule the next fetch if blocks are still pending
			f.rescheduleComplete(completeTimer)
1,首先遍历f.fetched,hash对应在fetcher里面的状态都清了。
如果发现超时了还没有没有获取到这个hash的block,则把这个announce加到request列表中,同时重新把announce放到f.completing状态列表。
2,然后遍历request列表,request列表里面的每个网络节点过来的所有的block的hash,都会调用fetchBodies(hashes)方法来获取区块body数据。这个fetchBodies(hashes)方法是peer.go里面的一个全局方法。
3, 这时候BlockHashesMsg 的fetcher处理就结束了,最后再启动completeTimer循环调度。


四,Fetcher分析, 之FilterBodies() ,Enqueue()

1,fetchBodies(hash)方法,调用了peer.go 里面的全局方法RequestBodies(hashes []common.Hash) Send给网络节点一个GetBlockBodiesMsg 消息。
2,然后pm.handleMsg 会收到 BlockBodiesMsg广播通知。
3,执行 pm.fetcher.FilterBodies(p.id, trasactions, uncles, time.Now())。
接下来就和FilterHeaders()流程类似,一顿啪啪啪验证,一顿啪啪啪改变状态,一顿啪啪啪通道跳转
4,庆幸的是,走完FilterBodies()就完事了,不用在走timer调度,也不用再发网络请求了。

5,在FilterHeaders()和FilterBodies()最后都走到了f.enqueue(announce.origin, block)方法

func (f *Fetcher) enqueue(peer string, block *types.Block) {
	hash := block.Hash()


	// Ensure the peer isn't DOSing us
	count := f.queues[peer] + 1
	if count > blockLimit {
		log.Debug("Discarded propagated block, exceeded allowance", "peer", peer, "number", block.Number(), "hash", hash, "limit", blockLimit)
		propBroadcastDOSMeter.Mark(1)
		f.forgetHash(hash)
		return
	}
	// Discard any past or too distant blocks
	if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist {
		log.Debug("Discarded propagated block, too far away", "peer", peer, "number", block.Number(), "hash", hash, "distance", dist)
		propBroadcastDropMeter.Mark(1)
		f.forgetHash(hash)
		return
	}
	// Schedule the block for future importing
	if _, ok := f.queued[hash]; !ok {
		op := &inject{
			origin: peer,
			block:  block,
		}
		f.queues[peer] = count
		f.queued[hash] = op
		f.queue.Push(op, -float32(block.NumberU64()))
		if f.queueChangeHook != nil {
			f.queueChangeHook(op.block.Hash(), true)
		}
		log.Debug("Queued propagated block", "peer", peer, "number", block.Number(), "hash", hash, "queued", f.queue.Size())
	}
}
过滤掉太远的区块。并把hash加入到f.queue列表中。
在loop主回路里面遍历f.queue列表,并把列表中的block insert到本地的block chain中。

func (f *Fetcher) insert(peer string, block *types.Block) {
	hash := block.Hash()


	// Run the import on a new thread
	log.Debug("Importing propagated block", "peer", peer, "number", block.Number(), "hash", hash)
	go func() {
		defer func() { f.done <- hash }()


		// If the parent's unknown, abort insertion
		parent := f.getBlock(block.ParentHash())
		if parent == nil {
			log.Debug("Unknown parent of propagated block", "peer", peer, "number", block.Number(), "hash", hash, "parent", block.ParentHash())
			return
		}
		// Quickly validate the header and propagate the block if it passes
		switch err := f.verifyHeader(block.Header()); err {
		case nil:
			// All ok, quickly propagate to our peers
			propBroadcastOutTimer.UpdateSince(block.ReceivedAt)
			go f.broadcastBlock(block, true)


		case consensus.ErrFutureBlock:
			// Weird future block, don't fail, but neither propagate


		default:
			// Something went very wrong, drop the peer
			log.Debug("Propagated block verification failed", "peer", peer, "number", block.Number(), "hash", hash, "err", err)
			f.dropPeer(peer)
			return
		}
		// Run the actual import and log any issues
		if _, err := f.insertChain(types.Blocks{block}); err != nil {
			log.Debug("Propagated block import failed", "peer", peer, "number", block.Number(), "hash", hash, "err", err)
			return
		}
		// If import succeeded, broadcast the block
		propAnnounceOutTimer.UpdateSince(block.ReceivedAt)
		go f.broadcastBlock(block, false)


		// Invoke the testing hook if needed
		if f.importedHook != nil {
			f.importedHook(block)
		}
	}()
}
首先调用共识引擎的方法f.verifyHeader(block.Header()),验证blockHeader的有效性。
如果没问题就广播出去,告诉全世界我的区块链更新了一个新区块。
然后调用f.insertChain(types.Blocks{block}) 插入本地区块链。
插入成功,最后再广播一次(这是多么的自恋啊),这次只广播block的hash。

总结

fetcher.go 作为以太坊同步区块的一个辅助类,它的职责就是层层把关,层层过滤,抵制无效的区块进入,杜绝无用的同步请求。这块代码很多很乱,第一次看可能会有点晕,第二次看可能还是很晕,多看几次可能还会晕

你可能感兴趣的:(以太坊源码深入分析(6)-- 以太坊P2P协议接收广播的处理和Fetcher源码分析)