在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。人工智能对矩阵的应用也是颇为广泛!
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。矩阵分解方法简化了理论和实际的计算。针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。无限矩阵发生在行星理论和原子理论中。无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵 。
矩阵历史
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最早在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则 。
矩阵的概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词 。
英国数学家阿瑟·凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的 。
1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。
无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具 。
矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。
学习AI离不开矩阵
矩阵对基本的一种数学算法,这些算法对AI意义重大!那么数学和AI的关系是什么呢?AI的本质就是计算机科学的一部分,它也需要借助大部分计算机的各种技术!当然,也需要用到软件,软件是由逻辑语言写成的,而任何逻辑语言都是离不开算法的,所以说,想要学好AI,那么一定要熟悉各种数学算法,其中就包括最常用到的矩阵!
如何学习矩阵
很多人在学习矩阵理论时,经常会感到非常吃力,觉得矩阵理论的逻辑符号十分繁琐,运算方法不易理解,定义定理很难掌握,最后导致学习的效率不高、效果不好。比如,实际中经常用到的是非负矩阵及其特征值和特征向量的性质,在教学的过程中,发现学生经常出现问题,经常搞混非负矩阵的分类以及它们的特征值的性质。出现的问题有:非负方阵是否有正特征值,如果有的话,是否惟一;是否有正的特征向量,如果有的话,是否惟一,等等。
其实,矩阵学习的第一步就是追根溯源,找到它的发展历史,在了解它的发展历史之后,我们学习矩阵来才会事倍功半!