在上一篇文章中 Spark源码系列:DataFrame repartition、coalesce 对比 对DataFrame的repartition、coalesce进行了对比,在这篇文章中,将会对RDD的repartition、coalesce进行对比。
RDD重新分区的手段与DataFrame类似,有repartition、coalesce两个方法
repartition
- def repartition(numPartitions: Int): JavaRDD[T]
1 /** 2 * Return a new RDD that has exactly numPartitions partitions. 3 * 4 * Can increase or decrease the level of parallelism in this RDD. Internally, this uses 5 * a shuffle to redistribute data. 6 * 7 * If you are decreasing the number of partitions in this RDD, consider using `coalesce`, 8 * which can avoid performing a shuffle. 9 */ 10 def repartition(numPartitions: Int): JavaRDD[T] = rdd.repartition(numPartitions)
返回一个新的RDD,该RDD恰好具有numPartitions分区。
repartition这个方法可以增加或减少此RDD中的并行度。在内部,这使用shuffle来重新分配数据。
如果要减少RDD中的分区数量,请考虑使用“coalesce”,这样可以避免执行shuffle。
这个方法在org.apache.spark.api.java.JavaRDD里面
真正调用的是org.apache.spark.rdd.RDD里面的repartition
1 /** 2 * Return a new RDD that has exactly numPartitions partitions. 3 * 4 * Can increase or decrease the level of parallelism in this RDD. Internally, this uses 5 * a shuffle to redistribute data. 6 * 7 * If you are decreasing the number of partitions in this RDD, consider using `coalesce`, 8 * which can avoid performing a shuffle. 9 */ 10 def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope { 11 coalesce(numPartitions, shuffle = true) 12 }
从上面可以看出,在此处还不是方法最终的,还调用了coalesce(numPartitions, shuffle = true) 这个方法,这个方法实现如下:
1 /** 2 * Return a new RDD that is reduced into `numPartitions` partitions. 3 * 4 * This results in a narrow dependency, e.g. if you go from 1000 partitions 5 * to 100 partitions, there will not be a shuffle, instead each of the 100 6 * new partitions will claim 10 of the current partitions. 7 * 8 * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, 9 * this may result in your computation taking place on fewer nodes than 10 * you like (e.g. one node in the case of numPartitions = 1). To avoid this, 11 * you can pass shuffle = true. This will add a shuffle step, but means the 12 * current upstream partitions will be executed in parallel (per whatever 13 * the current partitioning is). 14 * 15 * Note: With shuffle = true, you can actually coalesce to a larger number 16 * of partitions. This is useful if you have a small number of partitions, 17 * say 100, potentially with a few partitions being abnormally large. Calling 18 * coalesce(1000, shuffle = true) will result in 1000 partitions with the 19 * data distributed using a hash partitioner. 20 */ 21 def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null) 22 : RDD[T] = withScope { 23 if (shuffle) { 24 /** Distributes elements evenly across output partitions, starting from a random partition. 注意,键的哈希代码就是键本身。HashPartitioner将用分区的总数对它进行修改。*/ 25 val distributePartition = (index: Int, items: Iterator[T]) => { 26 var position = (new Random(index)).nextInt(numPartitions) 27 items.map { t => 28 // Note that the hash code of the key will just be the key itself. The HashPartitioner 29 // will mod it with the number of total partitions. 30 position = position + 1 31 (position, t) 32 } 33 } : Iterator[(Int, T)] 34 35 // include a shuffle step so that our upstream tasks are still distributed 包含一个shuffle步骤,以便我们的上游任务仍然是分布式的。 36 new CoalescedRDD( 37 new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition), 38 new HashPartitioner(numPartitions)), 39 numPartitions).values 40 } else { 41 new CoalescedRDD(this, numPartitions) 42 } 43 }
这个方法返回一个新的RDD,它被简化为"numpartition"分区。
这导致了一个狭窄的依赖关系,例如,如果从1000个分区到100个分区,将不会有一个shuffle,而是100个新分区中的每一个都会声明10个当前分区。
然而,如果你正在做一个剧烈的合并,例如当numPartitions = 1时,这可能导致您的计算发生在比您期待的更少的节点上(例如numpartition=1的情况下只有一个节点),即可能导致并行度下降,无法充分利用分布式环境的优势。
为了避免这种情况,可以传递shuffle = true。这将添加一个shuffle步骤,但意味着当前的上游分区将并行执行(无论当前分区是什么)。
注意:使用shuffle = true,您实际上可以合并到更多的分区。
如果您有少量的分区(比如100个),可能有一些分区非常大,那么这是非常有用的,调用coalesce(1000, shuffle = true)将产生1000个分区,使用散列分区器分发数据。
从上面的源码可以看到,def repartition(numPartitions: Int): JavaRDD[T] 其实调用的是coalesce(numPartitions, shuffle = true)这个方法,而且这个方法产生shuffle操作,分区的规则采用的个是哈希分区。
coalesce
- def coalesce(numPartitions: Int): JavaRDD[T]
1 2 /** 3 * Return a new RDD that is reduced into `numPartitions` partitions. 4 */ 5 def coalesce(numPartitions: Int): JavaRDD[T] = rdd.coalesce(numPartitions)
而这个方法调用的是org.apache.spark.rdd.RDD里面的def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null) : RDD[T]。
这个方法和上面repartitions的是一样的,只不过此处的shuffle参数是默认的false。
真正调用的是new CoalescedRDD(this, numPartitions)此时不会触发shuffle。
- def coalesce(numPartitions: Int, shuffle: Boolean): JavaRDD[T]
1 /** 2 * Return a new RDD that is reduced into `numPartitions` partitions. 3 */ 4 def coalesce(numPartitions: Int, shuffle: Boolean): JavaRDD[T] = 5 rdd.coalesce(numPartitions, shuffle)
这个和上面的coalesce(numPartitions: Int)类似,只是此处的shuffle参数不再是默认的false,而是自己指定的了,当shuffle为true是会触发shuffle,反之不会。
演示
1 scala> var rdd1=sc.textFile("hdfs://file.txt") 2 rdd1: org.apache.spark.rdd.RDD[String] = hdfs://file.txt MapPartitionsRDD[20] at textFile at:27 3 4 //默认分区数量为177 5 scala> rdd1.partitions.size 6 res12: Int = 177 7 8 //调用coalesce(10) 减少分区数量 9 scala> var rdd2 = rdd1.coalesce(10) 10 rdd2: org.apache.spark.rdd.RDD[String] = CoalescedRDD[21] at coalesce at:29 11 12 //分区数量减少到10个 13 scala> rdd2.partitions.size 14 res13: Int = 10 15 16 //直接增加分区数量到200 17 scala> var rdd2 = rdd1.coalesce(200) 18 rdd2: org.apache.spark.rdd.RDD[String] = CoalescedRDD[22] at coalesce at :29 19 20 //方法没有生效 21 scala> rdd2.partitions.size 22 res14: Int = 177 23 24 //将shuffle设置为true,增加分区到200 25 scala> var rdd2 = rdd1.coalesce(200,true) 26 rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[26] at coalesce at :29 27 28 //重新分区生效 29 scala> rdd2.partitions.size 30 res15: Int = 200 31 32 ------------------------------------------------------------------------------------------------ 33 //对于repartition增加分区到200 34 scala> var rdd2 = rdd1.repartition 直接增加o(200) 35 rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[30] at repartition at :29 36 37 //增加分区生效 38 scala> rdd2.partitions.size 39 res16: Int = 200 40 41 //对于repartition减少分区到10 42 scala> var rdd2 = rdd1.repartition(10) 43 rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[34] at repartition at :29 44 45 //减少分区生效 46 scala> rdd2.partitions.size 47 res17: Int = 10
总结
- coalesce(numPartitions: Int)
当新的分区数小于原来的分区时,分区生效切并且不会触发shuffle;
当新的分区数大于原来的分区时,分区无效还是原来的数量。
- coalesce(numPartitions: Int, shuffle: Boolean)
当shuffle为true时候,无论新的分区比原来的大还是小,分区均生效,并且触发shuffle操作,此时等同于repartition(numPartitions: Int);
当shuffle为false时候,等同于coalesce(numPartitions: Int)。
- def repartition(numPartitions: Int)
无论新的分区比原来的大还是小,分区均生效,并且触发shuffle操作;
很明显repartition就是当shuffle为true时候的coalesce(numPartitions: Int, shuffle: Boolean)方法。
此为本人学习工作总结,转载请注明出处!!!!