大象起舞:用PostgreSQL解海盗分金问题

作者简介


大象起舞:用PostgreSQL解海盗分金问题_第1张图片 640?wx_fmt=png&wxfrom=5&wx_lazy=1

张泽鹏(redraiment):51信用卡信贷业务高级架构师。



  • 资深挖坑不填党:在51先后挖过风控、信审、数据支持等多个互金信贷相关的坑

  • 冷技术控:51内 PostgreSQL、FreeBSD、Emacs、Lisp 等技术的宣传者

  • 懒癌患者:拒绝重复,追求“元自动化”,将一切可自动化的工作自动化

背景介绍


今天午休期间刷微信,看到云和恩墨的盖总转了一条朋友圈,说杨长老在Oracle中用SQL解海盗分金问题(原文《无往不利:用SQL解海盗分金的利益最大化问题》,看完之后手痒,决定试试在 PostgreSQL 中解决该问题。

问题简述


有5个海盗分100个金币,通过抓阄决定了先后顺序,依次提出分赃方案,需得半数以上(含自己)同意才能通过,否则提方案的海盗就会被处死。现要求为第一个海盗提供最佳方案。

需求分析


原文中有提到用逆推的思路解决问题,但对问题的分析比较简短,所以我补充一下我的思考过程。


首先,从问题中可提炼出以下几点有用的信息:

  • 海盗数量:5

  • 金币数量:100

  • 抓阄结果:顺序已决定,可给海盗编号为1-5

  • 通过条件:赞成人数比例 > 50%

  • 最佳方案:问题中海盗们需争取"保命"和"金币",并且前者比后者更重要,因此会产生以下三种结果,其中收益逐个递减

    • 保命,且尽可能多地获得金币

    • 保命,但没金币

    • 没命


原问题假定所有的海盗都足够理智、足够聪明,言下之意是海盗们会权衡:当且仅当,同意当前方案带来的收益,高于拒绝当前方案带来的收益,才会同意。因此,为了让当前的方案通过,需要去贿赂至少50%的海盗,让他们的收益高于后续方案的收益。


这个过程和竞选总统很像。比如,特朗普承诺如果他能当总统,每位共和党成员都能得到一枚金币;而希拉里当总统,将只给每位民主党成员发一枚金币。利益虽然小,但两个党派成员都清楚,若非本党派人士担任总统,会连这一点小利益都没有,因此都会支持自己党派的成员,以获得这看似不大的最高收益。

任务拆解


综上所述,为了贿赂成功,得先了解竞争对手的行贿策略,在其基础上提供更高的收益(没命的海盗为其保命、保住命的海盗增加他金币的数量);为使行贿的成本最低,可优先贿赂在竞争对手方案中收益最低的群体。


这意味着,5个海盗的最佳策略依赖4个海盗的策略,4个海盗的策略依赖3个海盗的策略,依次类推。这个过程,就是原文中提的逆推过程:


  • 1个海盗时,他直接拥有100个金币,即分配方案是:[100]

  • 2个海盗时,无论提出何种方案,都不会超过前一个方案的收益100,所以第二个提方案的海盗不会同意任何方案,即第一个海盗在该场景必死,分配方案是:[null, 100]

  • 3个海盗时,上一个方案中有一个海盗"没命",可以用"保命"去贿赂他,不用花金币,即最佳分配方案是:[100, 0, 0]

  • 4个海盗时,同理,无论提何种方案,都无法超越100这个最高收益,所以有一个海盗一定会反对,剩下两个海盗在之前的方案中没有任何收益,只要给他们各1个金币即可:[98, 0, 1, 1]

  • 5个海盗时,前面4个海盗都可以被贿赂,但根据最小成本原则,优先贿赂上一轮收益为0的海盗,再从收益是1的两位海盗中随机挑选一位,给他2个金币,因此有两套方案:[97, 0, 1, 2, 0] 或 [97, 0, 1, 0, 2]

程序设计


前文手工推导整个过程,现在就开始尝试用 SQL 来模拟这个过程。倒不是说 SQL 是解决该问题的最佳选择,而是想通过这个问题来学习和巩固 SQL 的知识。


数据结构


该问题中,每个海盗需要保存他的编号以及他的收益。标准 SQL 语言中,除了提供数值、字符串等基础数据类型,还支持数组这种复合数据类型,语法是`array[...]`。海盗的信息可以用一个长度为2的整型数组来保存,其中第

一项保存海盗的编号,第二项保存海盗的收益,如果海盗"没命"则金额`null`。


例如,`array[2, null]`表示编号为2的海盗"没命"、`array[4, 98]`表示编号为4的海盗最高收益是98个金币。


分配策略--多个海盗的信息--也可采用数组保存,即二维的整型数组。例如上述2个海盗是的分配策略是:`array[[1, null], [2, 100]]`,即第一个海盗没命,第二个海盗有100个金币。


贿赂算法


根据前文的分析,实时贿赂的步骤如下:


1.分配策略根据每个海盗的收益排升序:

a)null(没命)最靠前

b)金额小的靠前


2.增加前一半的海盗的收益

  • 一半的数量:排除自己,剩余海盗的总数`n`

    • `n`为偶数:一半的数量为`n / 2`

    • `n`为奇数:一半的数量为`(n + 1) / 2`

  • 行贿策略

    • 金额为 null 时,改成0

    • 金额非 null 时,加1


3.调整后一半的海盗收益为0


成本升序


PostgreSQL原生未提供通用数组的排序功能(intarray插件中的sort函数只能用于非null的一位整型数组),要对二维整型数组结构的分配策略排序,需要先将数组展开成行记录(row),再用`order by`排序。


虽然PostgreSQL提供了`unnest`函数用于将数组展开成行,但它真正的功能是`flatten`,会拍平深层的结构。


例如:`select unnest(array[[1,2],[3,4]])` 会返回4行记录,而不是期望的2行记录。


因此,需要自己实现数组的一维展开功能。需要用到 `array_lower(anyarray, int)` 和  `array_upper(anyarray, int)` 两个函数分别获得数组下标的上边界和下边界,然后用  `generate_series` 生成下标序列。


注意:SQL 中的数组下标是从 `1` 开始。假设策略数组的名称是 `strategy`,则展开+排序的代码如下:


select

  strategy[i][1] as id,

  strategy[i][2] as amount

from

  generate_series(array_lower(strategy, 1),

                  array_upper(strategy, 1)) as t(i)

order by

  amount nulls first


其中 `nulls first` 是显示地指定 `null` 排在最前。PostgreSQL 中,`null` 默认比非 `null` 值大,因此升序时排在最后,降序时排在最前。可用 `nulls first` 或 `nulls last` 打破该默认行为。


标记同伙


为了判断哪些海盗属于同伙(前一半),需要给上述排好序的列表标注新的下标, PostgreSQL 中提供了 `row_number()` 窗口函数,可以获得当前行的行号;接着用函数 `array_length(anyarray, int)` 可获得数组的长度,最后一个需要贿赂的海盗的下标是 `(array_length(strategy, 1) + 1) / 2`。假设上述排好序的数据存入临时表 `strategies`,则计算每一个海盗的贿赂成本代码如下:


select

  id,

  amount,

  case

    -- 判断是否是同伙

    when row_number() over () <= (array_length(strategy, 1) + 1) / 2

      then coalesce(amount + 1, 0) -- 活着的海盗金币上涨,死了的海盗复活

    else 0 -- 后一半的海盗没有任何金币

  end as cost

from

  strategies


分配方案


如果行贿的成本(`sum(cost)`)高于总金币数量(`100`),意味着无法得到超过半数的赞成,保持上一次的方案,即保留 `amount` 作为每个海盗的最大收益;否则,减去成本剩下的就是新增海盗的最高收益(`100 - sum(cost)`),其他海盗改用`cost`作为新一轮的最大收益。


在"数据结构"一节中已经提过,策略的数据结构是二维整数数组,前文为了排序,已将数组转成行记录,先需要使用 PostgreSQL 的窗口函数 `array_agg` 再将行记录转成数组,同时使用 `array_cat` 追加一个海盗信息。


假设上述标记好同伙的数据存入临时表 `strategies`,则计算分配方案的代码如下:


select

  case

    when sum(cost) <= 100 then -- 判断是否能存活

      array_cat(array_agg(array[id, cost]),

                array[[array_length(strategy, 1) + 1,

                       100 - sum(cost)]]::int[])

    else

      array_cat(array_agg(array[id, amount]),

                array[[array_length(strategy, 1) + 1,

                       null]]::int[])

  end

from

  strategies


迭代


至此,已完成分配方案单次调整的功能:给定任意分配方案,能算出再增加一个海盗时的最优分配策略。为了得到5个海盗的最优解,只需把这个功能迭代5次即可;但迭代过程中每一次的输出都要作为下一次的输入。SQL正好提供了 `with recursive`,同时满足迭代和管道两个功能!


`with` 子句用于定义只在一个查询中存在的临时表,带上 `recursive` 关键字后,可执行递归查询,例如递归查询所有子类型。我一直觉得这个名字太容易误导,它的整个执行过程其实类似广度优先搜索(BFS),例如:


with recursive foo(n) as (

  values (1), (3), (5) -- 队列初始状态

union all

  select n + 3 from foo where n < 5

)

select * from foo;


这段递归查询代码功能等价于以下迭代的 Python 代码:


(queue, foo) = ([1, 3, 5], []) # 对应 values (1), (3), (5)

while queue:

  n = queue.pop(0)

  foo.append(n)

  if n < 5:                        # 对应 where n < 5

    queue.append(n + 3)          # 对应 select n + 3

print foo                          # 对应 select * from foo


上述两端代码的执行结果都是:1、3、5、4、6、7,共6项数据。其中前三项`1`、`3`、`5`是队列初始化的数据,而`4`由`1`生成、`6`由`3`生成、`7`由`4`生成。


回到海盗分金的问题,假设把上一节的分配策略功能定义成一个函数`bribe`,则迭代的代码如下:


with recursive spoils(strategy) as (

  values (array[[1, 100]]) -- 初始状态,一个海盗拿全部

union all

  select

    bribe(strategy)          -- 生成下一个分配策略

  from

    spoils

  where

    array_length(strategy, 1) < 5

)


即在策略长度小于5时,反复生成新的策略。


完整代码


至此,需求中的所有功能点都有对应的 SQL 方案可解决:迭代5次后,选出数组长度(海盗人数)为5的方案即可。以下是完整的 SQL 代码,在 PostgreSQL 可直接执行:


with recursive spoils(strategy) as (

  values (array[[1, 100]]) -- 初始状态,一个海盗拿全部

union all

  select (

    with strategies as (    -- 用嵌套的 with 子句计算到下一个状态的成本

      select

        *,

        case

          when row_number() over () <= (array_length(strategy, 1) + 1) / 2

            then coalesce(amount + 1, 0)

          else 0

        end as cost

      from (

        select

          strategy[i][1] as id,

          strategy[i][2] as amount

        from

          generate_series(array_lower(strategy, 1),

                          array_upper(strategy, 1)) as t(i)

        order by

          amount nulls first

      ) as t

    )

    select

      case

        when sum(cost) <= 100 then -- 判断是否能存活

          array_cat(array_agg(array[id, cost]),

                    array[[array_length(strategy, 1) + 1,

                           100 - sum(cost)]]::int[])

        else

          array_cat(array_agg(array[id, amount]),

                    array[[array_length(strategy, 1) + 1,

                           null]]::int[])

      end

    from

      strategies

  )

  from

    spoils

  where

    array_length(strategy, 1) < 5

)

select

  5 + 1 - strategy[i][1] as id,

  strategy[i][2] as amount

from (

  select

    strategy,

    generate_series(array_lower(strategy, 1),

                    array_upper(strategy, 1)) as i

  from

    spoils

  where

    array_length(strategy, 1) = 5

) as t

order by

  id;


执行结果如下,并且性能也不错,在我本地测试只需要 1ms:


大象起舞:用PostgreSQL解海盗分金问题_第2张图片

新的挑战


上述方案只得到一个最优解,从前文分析可知,5个海盗分金时有2个最优解,于是杨长老又出招了:"能否只用一句 SQL 获得所有的最优解?"有兴趣的小伙伴可以一起来挑战一下,欢迎微信交流!


资源下载

关注公众号:数据和云(OraNews)回复关键字获取

‘2017DTC’,2017 DTC 大会 PPT

‘DBALIFE’,“DBA 的一天”海报

‘DBA04’,DBA 手记4 经典篇章电子书

‘RACV1’, RAC 系列课程视频及 PPT

‘122ARCH’,Oracle 12.2 体系结构图

‘2017OOW’,Oracle OpenWorld 资料

‘PRELECTION’,大讲堂讲师课程资料

大象起舞:用PostgreSQL解海盗分金问题_第3张图片

你可能感兴趣的:(大象起舞:用PostgreSQL解海盗分金问题)