大数据工程师需要学习哪些必备知识和技能呢?

大数据产业在科学发展的趋势中越来越受欢迎。大数据工程师需要学习哪些知识和技能?

首先,数据可视化。

R语言不仅是一种编程语言,而且具有强大的统计计算功能和方便的数据可视化系统。这里,我推荐你读一本叫做R数据可视化手册的书。《R数据可视化手册》主要关注R的图形系统,指导读者通过图形系统实现数据可视化。本书提供了超过150种快速绘制高质量图形的技术,每种技术都用于满足特定的绘图要求。

Python已经看到了许多新的Python数据可视化库,它们已经弥补了一些空白。事实上,MatPoTLIB已经成为数据可视化最重要的数据库。此外,还有许多其他的库,如VISPY、BoKeh、Seabn、PyGa、Pyura和NETWorkX。这些库中的一些是建立在MatPultLB上的,有些还具有其他功能。

ECTARS和D3.JS是基于HTML5的两个纯Java图表库。它们提供直观、生动、交互式和可定制的数据可视化图表。创新的拖放计算、数据视图、范围漫游等特性极大地增强了用户体验,赋予用户挖掘和集成数据的能力。它具有Mashup图、拖放计算、数据视图制作、动态类型切换、图例切换、数据区域选择、范围漫游、多维堆栈等功能。

在Excel中可以选择大量的公式和函数。Microsoft Excel可用于执行计算、分析信息以及管理电子表格或网页中的数据信息列表和数据图表。它可以实现许多方便的功能,给用户带来方便。事实上,Excel可以完全满足日常工作中图表制作和数据可视化的需要。因此,要进入大数据产业,学习Excel是基础。

二。机器学习

机器学习的基础包括聚类、时间序列、推荐系统、回归分析、文本挖掘、决策树、支持向量机、贝叶斯分类和神经网络。这些基本知识仅仅通过听名字是无法理解的,但如果你掌握了统计和概率的基本知识,你就可以很容易地掌握这些不可理解的名词。因此,有必要对机器学习前的统计和概率进行研究。

在完成统计学和概率学的基础研究之后,你可以选择一个或两个机器学习工具进行实践。百度的谷歌和百度脑的张量是优秀的机器学习框架。

三。算法

对于程序员来说,该算法并不太奇怪,首先,我们需要了解什么是数据结构,包括堆栈、队列、链表、哈希表、二叉树、红黑树、B树。然后,我们需要学习常见的算法,包括排序(插入排序、桶排序、堆排序、快速排序)、最大子阵列、最长公共子序列、最短路径和矩阵存储操作。

最后,掌握常用的数据分析和挖掘软件,如Matlab、SPSS和SAS等。

查看更多文章:

没有基础想学大数据难吗?

大数据入门学习,你要掌握这些技能

大数据领域三个大的技术方向

自学大数据从哪入手

大数据专业未来就业前景如何?

教你大数据必修三大技能 ,快快记录下来

你可能感兴趣的:(大数据,资讯,编程,Hadoop,程序员,科技,SQL,storm,spark,框架)