- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- 遥感图像分割系统:融合空间金字塔池化(FocalModulation)改进YOLOv8
xuehaisj
YOLO人工智能计算机视觉yolov8
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义遥感图像分割是遥感技术领域中的一个重要研究方向,它的目标是将遥感图像中的不同地物或地物类别进行有效的分割和识别。随着遥感技术的不断发展和遥感图像数据的大规模获取,遥感图像分割在农业、城市规划、环境监测等领域具有广泛的应用前景。然而,由于遥感图像的特
- GIS数据处理软件:地理信息与遥感领域的智慧引擎
GeoSaaS
地理信息智慧城市数据库人工智能大数据gis
在地理信息与遥感技术的广阔天地间,数据处理软件如同一座桥接驳岸的智慧引擎,将海量的原始数据转化为决策的金矿,推动着城市规划、环境保护、灾害管理、资源开发等领域的深度变革。本文将深入解析其核心功能、技术前沿、应用实例及未来展望,探析数据处理软件如何为地理信息与遥感技术插上智慧的翅膀。数据处理软件的核心技术与功能矩阵数据清洗与格式转换:自动去除冗余杂乱码、异常值,格式标准化数据,确保后续处理的准确性与
- 枫叶的成长计划
小婷说
2019/12.23【行】毕:图分类,和鹰说清楚昨天的事,遥感复习到五十页,和白杨聊了聊昨天发生的事,买苹果未毕:c++未写,电影还没看1.找到给桌子的那个人2.早上七点起床做好标语准备买苹果啦3.遥感图分类问问黎霞小姐妹4.遥感背书二十五页5.做五道数学题嘻嘻嘻(˙︶˙)6.隔一小时发布买苹果消息7.中午和静雯吃饭(✪✪)晚上喝葵葵一起聊聊【见】今天是冬至好热闹,一大早群里的消息就把我惊醒,满屏
- [数据集][目标检测]卫星遥感舰船检测数据集VOC+YOLO格式2238张17类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2238标注数量(xml文件个数):2238标注数量(txt文件个数):2238标注类别数:17标注类别名称:[“AircraftCarrier”,“AuxiliaryShips”,“Cargo”,“Commander”
- 遥感多模态基础大模型汇总-实时更新
遥感-GIS
#遥感#图像处理深度学习#大模型#遥感大模型
本文内容来自下面链接,考虑到很多同学登录不了,故在此平台进行分享。遥感基础大模型TableofContentsModelsRemoteSensingVisionFoundationModels遥感视觉基础模型RemoteSensingVision-LanguageFoundationModels遥感视觉语言基础模型RemoteSensingGenerativeFoundationModels遥感生
- 基于Sentinel-1遥感数据的水体提取
遥感-GIS
sentinel图像处理arcgis
本文利用SAR遥感图像进行水体信息的提取,相比光学影像,SAR图像不受天气影响,在应急情况下应用最多,针对水体,在发生洪涝时一般天气都是阴雨天,云较多,光学影像质量较差,基本上都是利用SAR影像对受灾范围进行评估,故此本文重点描述SAR影像中的水体提取问题,目前应用较多的是Sentinel-1数据。本文结构:Sentinel-1数据的介绍Sentinel-1数据的预处理水体信息提取总结1Senti
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 遥感之机器学习树集成模型-CART算法之回归
遥感-GIS
遥感之机器学习树集成模型机器学习图像处理arcgis
本文在前面文章的基础上,连续介绍CART树在回归中的应用,其回归技术经常用于定量遥感领域,涉及各种地表参数含量的反演。主要分为如下几部分:回归概念描述回归树中数据集的划分准则CART回归树的原理和流程CART回归树的核心代码前面内容可参考:遥感之机器学习树模型专栏1回归概念机器学习中的回归建模以及相应的回归算法,在遥感领域对应的就是定量遥感分方向,比如水质参数反演,土壤中各种参数反演,森林各种生物
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- ENVI处理遥感教程及学习资料
有梦想的炸豆皮
ENVI
转载自http://blog.sina.com.cn/s/blog_764b1e9d0102y64u.html微博ENVI-IDL技术殿堂2017年ENVI-IDL遥感应用培训班素材及录屏共享2017年在8个城市共举办8场培训班。共有来自260多个单位的630多人参加。今年培训班继续以中国遥感应用协会和我公司的名义共同主办,部分地区与地方遥感协会、高校联合主办。培训时间依然是5天,内容上形成卫星图
- 遥感影像-语义分割数据集:Vaihingen数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉
原始数据集详情Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。KeyValue卫星类型未知覆盖区域一个相对较小的村庄,有许多独立的建筑和小的多层建筑-Vaihingen场景城市分辨率5cm数量38张单张尺寸6000*6000原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数三通道官网https://www.isprs.org/education/benchm
- 【国外比较权威的免费的卫星数据网站——USGS Earth Explorer】
学地理的小胖砸
ENVI遥感遥感影像数据地理信息科学地图学卫星影像图像处理
USGSEarthExplorer网址:https://earthexplorer.usgs.gov/简介:USGSEarthExplorer是一个全面的卫星影像数据检索工具,提供历史卫星图像的下载和访问。它拥有NASALandsat系列卫星的遥感数据,这些卫星自1972年以来积累了宝贵的数据,对于历史分析、环境监测等方面具有不可替代的作用。此外,该网站还提供免费的高程模型数据,如NASA的AST
- 【目标检测数据集汇总】各类目标检测数据集VOC+YOLO格式地址汇总
熬夜写代码的平头哥∰
数据集目标检测YOLO目标跟踪
序号项目名称下载地址1【目标检测数据集】西红柿番茄成熟度检测640张3类别VOC+YOLO格式.zip点我下载2【目标检测数据集】轮船分类检测数据集500张4类别VOC+YOLO格式.zip点我下载3【目标检测数据集】手枪gun标注检测数据集VOC+YOLO格式3400张.zip点我下载4【目标检测数据集】蚊子检测数据集295张VOC+YOLO格式可训练.zip点我下载5【目标检测数据集】遥感类军
- SWAT模型高阶十七项案例分析实践技术
科研的力量
水文地质土壤SWAT模型DEM数据土地利用水资源时空分布特征CMIP6数据处理水资源
【案例实践】:1)遥感产品和SWAT模型快速建模2)基于水文响应单元(HRU)的水资源时空分布特征3)基于自定义流域与河道的SWAT模型建模与分析4)子流域划分原理及其对模型不确定性的影响5)坡度划分原理及其对模型不确定性的影响6)DEM数据空间分辨率及其模型不确定性的影响7)DEM数据来源及其对模型不确定性的影响8)DEM数据重采样方法及其模型不确定性的影响9)土地利用遥感解译及其在模型建模中的
- 2013-2023年 中国MOD17A3H植被净初级生产力(NPP)数据
小王毕业啦
大数据人工智能大数据社科数据
中国MOD17A3H植被净初级生产力(NPP)数据是基于NASA的MODIS卫星遥感数据计算得出的,这些数据对于评估生态系统碳收支、碳循环以及气候变化的影响具有重要意义。NPP数据可以反映植被通过光合作用固定大气中二氧化碳并转化为有机物质的能力,是衡量生态系统健康状况和生产力水平的重要指标。如果NPP呈现增加趋势,可能意味着生态系统的生产力在增强,有利于碳的固定和减少温室气体排放;反之,如果NPP
- WRF DA的安装、编译及运行;WRF DA变分资料同化、WRF DA混合同化新方法;变分同化的单点试验、混合同化的单点试验等
Teacher.chenchong
大气人工智能经验分享
数值预报已经成为提升预报质量的重要手段,而模式初值质量是决定数值预报质量的重要环节。资料同化作为提高模式初值质量的有效方法,成为当前气象、海洋和大气环境和水文等诸多领域科研、业务预报中的关键科学方法。资料同化新方法的快速发展,气象常规资料、卫星遥感观测和大气环境等多种资料日益增加,为资料同化的有效应用奠定了坚实的科学基础,也导致许多新的复杂科学问题,增加了实际应用的难度。有效提升广大科研、业务人员
- <数据集>遥感船舶识别数据集<目标检测>
深度学习lover
深度学习数据集目标检测人工智能计算机视觉YOLO深度学习
数据集格式:VOC+YOLO格式图片数量:15047张标注数量(xml文件个数):15047标注数量(txt文件个数):15047标注类别数:25标注类别名称:['AircraftCarrier','AuxiliaryShips','OtherShip','OtherWarship','Destroyer','Dock','Hovercraft','Submarine','Ferry','Barg
- ArcPy批量填充大量栅格图像NoData无效值的方法
疯狂学习GIS
本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件批量进行无效值(NoData值)填充的方法。 在处理栅格图像文件时,我们经常会遇到图像中存在有无效值(即NoData值)的情况。如下图所示,这里有一个矢量面要素图层和该矢量图层范围对应的一景栅格图像;可以看到,由于该栅格图像存在无效值NoData,因此栅格图像是没有完全遮盖矢量图层的。 在一些情况下,这些无效值可能会对我们的后
- 基于遥感解译与GIS技术生态环境影响评价图件制作
宝藏口袋
ArcGIS遥感生态环境大数据arcgis数据分析
《环境影响评价技术导则生态影响》(HJ19—2022)即将实施,其中生态影响评价图件是生态影响评价报告的必要组成内容,是评价的主要依据和成果的重要表现形式,是指导生态保护措施设计的重要依据。在众多图件中,土地利用图、植被类型图、植被覆盖度图、土壤侵蚀图等专题图的制作需用到大量的遥感和GIS技术。1、掌握遥感和GIS土地利用现状解译与制图技术2、掌握遥感和GIS植被分类与制图技术3、掌握遥感和GIS
- 基于R语言遥感随机森林建模与空间预测
weixin_贾
统计语言类模型分布式
随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。随机森林对噪声和异常值具有鲁棒性,其预测结果通过对多棵树的集成投票或平均获得,减少了单个异常对结
- InSAR技术大揭秘:数据处理、地形重建、形变监测一网打尽!
AIzmjl
生态insar大地测量sar卫星时间序列
合成孔径雷达干涉测量(InterferometricSyntheticApertureRadar,InSAR)技术作为一种新兴的主动式微波遥感技术,凭借其可以穿过大气层,全天时、全天候获取监测目标的形变信息等特性,已在地表形变监测、DEM生成、滑坡、火山活动、冰川运动、人工建筑物形变信息提取等多种领域展开了成功应用。InSAR作为一种新兴的空间大地测量技术,克服了传统大地测量技术需要人工野外布点、
- GEE在灾害预警中的遥感云大数据应用及GPT模型辅助分析
AIzmjl
GPT生态遥感大数据gptgee灾害预警水体湿地遥感
随着遥感技术的快速发展,云大数据在灾害、水体与湿地领域的应用日益广泛。通过遥感云大数据,我们能够实时获取灾害发生地的影像信息,为灾害预警、应急响应提供有力支持。同时,在水体与湿地监测方面,遥感云大数据也发挥着重要作用,帮助我们了解水体的分布、变化以及湿地的生态状况。近年来,GPT模型在自然语言处理领域取得了显著成果,其强大的文本生成和理解能力为遥感云大数据的应用提供了新的可能。通过将GPT模型与遥
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- 挑战杯 基于机器视觉的图像拼接算法
laafeer
python
前言图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?这是一个较为新颖的竞
- 无感
慢_简
万般小溪汇入河汉江淮澄江如练犹如一道清流时而温柔时而沁人心脾奔涛炙浪遥感如画之景,竟再无平静之意欲与江河势比美,也能会临绝顶攬日月高比天公能言矮,壮似山川不可攀举手平星辰,身动定河川心有万千阔,一叶一世界图片发自App
- GEE案例——如何sentinel-2影像利用NDWI归一化水体指数进行长时序水域分析(2015-2023年滇池为例)
此星光明
GEE案例分析前端服务器时序sentinel影像JavaScript面积
简介Sentinel-2是一颗遥感卫星,其提供的高分辨率数据可以广泛应用于环境监测、土地利用和水资源管理等领域。其中,利用归一化水体指数(NormalizedDifferenceWaterIndex,NDWI)来进行长时序水域分析是一种常见的方法。本文将介绍NDWI的定义和计算方法,并结合Sentinel-2影像的使用,详细说明如何进行长时序水域分析。首先,我们来看一下NDWI的定义和计算方法。N
- 中科星图(案例)——NDVI植被指数的计算和图例添加以及median和mosaic的影像拼接
此星光明
中科星图前端javascriptgvendvi植被指数云计算云平台
简介在GVE云平台上实现NDVI(NormalizedDifferenceVegetationIndex)植被指数的计算和图例添加,可以通过以下步骤进行:1.数据获取和准备首先,需要获取卫星影像数据,可以选择公开的遥感数据源,如Landsat、MODIS等。数据获取后,需要对数据进行预处理,包括数据格式转换、投影变换等,以确保数据的一致性和可用性。2.NDVI计算NDVI是通过计算红外波段和可见光
- 【MATLAB】赫尔默特方差分量估计算法
Lwcah
算法
微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~有意向获取代码,请转文末观看代码获取方式~1文章简介文章DOI:10.1109/TGRS.2023.3265508链接:https://ieeexplore.ieee.org/document/10097458/keywords#keywords该篇文章讲的是一种遥感反演雪深的新方法,
- 英文论文(sci)解读复现【NO.18】基于DS-YOLOv8的目标检测方法用于遥感图像
人工智能算法研究院
英文论文解读复现目标跟踪人工智能机器学习
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行创新点代码复现,有需要的朋友可关注私信我获取。一、摘要改进的YOLOv8模型(DCN_C2f+SC_
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod