Tensorflow实现经典网络LeNet的学习总结及有关代码细节讲解!

一、前言

        最近刚开始学习Tensorflow,在掌握Tensorflow基本用法的条件下去实现经典网络LeNet,在代码细节上有许多不理解的地方,于是通多查找有关博客和用代码做了小实验,在此总结一下,以便日后回顾,同时也有助于刚学习的童鞋理解。

二、tensorflow入门教程

    对于tensorflow的入门教程我觉得官网的还不不错的,网址:http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

三、LeNet网络详解

     LeNet网络的详解,大神Jack Cui的个人网站上写得很详细,里面有很多有关深度学习的干货,网址:https://cuijiahua.com/blog/2018/01/dl_3.html

四、mnist数据集下载

       mnist数据集下载地址:http://yann.lecun.com/exdb/mnist/

五、conv2d卷积计算中的补零细节

       二维卷积计算 conv2d的参数详解,这位博主:https://blog.csdn.net/qq_17272679/article/details/79591540#commentBox

,特别是补零的理解讲解得很到位(之前我一直认为补零都是默认补一圈零,后面看了层与层之间的参数设置的代码发现,我错了),最后总结那里所讲的填充数好像错了。查看了简书了一篇文章的作者查看了源码后的总结:https://www.jianshu.com/p/05c4f1621c7e

 

六、LeNet的Tensorflow实现代码

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import time

# 获取minist数据
# E:\data\mnist_data1为mnist数据集存放的本地地址
mnist_data_set = input_data.read_data_sets("E:\data\mnist_data1", one_hot=True)

# 声明输入图片数据类别
# mnist的手写体图片大小为28*28=784
# None表示行向量的维度是任意的,也就是一次可以输出多张图片
# y_为网络的输出
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])


# 把输入的数据转变二维形式,用于卷积计算
# -1表示可以一次存储多张照片,1表示图像的通道为1
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 卷积核初始化,大小为6个5*5的卷积核,1和x_image的1对应,既为图像的通道
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
# 偏置项
bias1 = tf.Variable(tf.truncated_normal([6]))
# 二维卷积计算
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
# 池化层
maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2)

maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3)

# 全连接层
# 权重W参数初始化
W_fc1 = tf.Variable(tf.truncated_normal([7*7*120, 80]))
# 偏置项
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 将卷积的输出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7*7*120])
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
# 输出层,使用softmax进行多分类
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)

# 损失函数,交叉熵
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用梯度下降法来更新权重,学习速率为0.001,改为0.01的话
# 导致权重更新有问题,准确率很低
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)

sess = tf.InteractiveSession()

# 测试准确率,tf.argmax()计算行或列的最大值,返回最大值下标的向量
# tf.equal()计算两个向量对应的元素是否相等,返回数据为bool
# tf.cast(),把bool数据转化为浮点型
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

# 对所有变量进行初始化
sess.run(tf.global_variables_initializer())

start_time = time.time()
for i in range(20000):
    # 获取训练数据,每次100张
    batch_xs, batch_ys = mnist_data_set.train.next_batch(100)
    train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    # 每个20次输出当前的准确率
    if i % 20 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
        print('step %d, training accuracy %g' % (i, train_accuracy))
        # 计算时间间隔
        end_time = time.time()
        print('time: ', (end_time - start_time))
        start_time = end_time

# 关闭会话
sess.close()
# 亲测,准确率能达到99%

 

你可能感兴趣的:(深度学习)