- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- Caffeine 与 Guava Cache
雨季里的向日葵
java
一、概要1.1背景在项目开发中,为提升系统性能,减少IO开销,本地缓存是必不可少的。最常见的本地缓存是Guava和Caffeine,Caffeine是基于GoogleGuavaCache设计经验改进的结果,相较于Guava在性能和命中率上更具有效率。1.2应用场景愿意消耗一些内存空间来提升速度预料到某些键会被多次查询缓存中存放的数据总量不会超出内存容量二、GuavaCache2.1GuavaCac
- OSError: [WinError 126] 找不到指定的模块---caffe2_detectron_ops_gpu.dll
努力的小柚
python运行问题pythonpytorch
代码复现记录:问题:OSError:[WinError126]找不到指定的模块。Errorloading"C:\Anaconda\Anaconda3\envs\TIN\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll"oroneofitsdependencies.在搜索很多关于无法查找到caffe2_detectron_ops_gpu
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- Linux下Caffe、Docker、Tensorflow、PyTorch环境搭建(CentOS 7)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:模型的训练、测试、部署都可以通过Docker环境完成,环境问题会更少。1.CUDA8.0安装CUDA8.0Configenvvariables#CUDAPATHexportPATH="/usr/local/cuda-8.0/bin:$PATH"#CUDALDLIBRARY_PATHexportLD_LIBRARY_PATH="/us
- JVM级缓存本地缓存Caffeine
旺仔爱Java
JVM专题jvmJVM缓存本地缓存CaffeineGuavaCache
JVM级缓存本地缓存Caffeine和GuavaCache前言一、创建缓存的代码逻辑二、Caffeine的优化方面淘汰算法W-TinyLFU三、Caffeine的业务使用总结前言最新的Java面试题,技术栈涉及Java基础、集合、多线程、Mysql、分布式、Spring全家桶、MyBatis、Dubbo、缓存、消息队列、Linux…等等,会持续更新。一、创建缓存的代码逻辑Caffeine:publ
- 面试redis篇-04缓存雪崩
卡搜偶
缓存面试redis
原理缓存雪崩:是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。解决方案:给不同的Key的TTL添加随机值利用Redis集群提高服务的可用性(哨兵模式、集群模式)给缓存业务添加降级限流策略(ngxin或springcloudgateway)给业务添加多级缓存(Guava或Caffeine)问答面试官:什么是缓存雪崩?怎么解决?回答:缓存雪崩意思是设
- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- MMsegmentation-随机初始化
SatVision炼金士
mmalb-炼金术python
系列文章目录文章目录系列文章目录前言一、初始化单个模块二、初始化多个模块总结前言mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档mmengine支持模型初始化方法包括:BaseInit,Caffe2XavierInit,ConstantInit,KaimingInit,NormalInit,PretrainedInit,TruncNormalInit,UniformInit,
- 解决:源码安装caffe时遇到libcudnn.so: file not recognized问题
Gracie丹妮
参考教程(19条消息)ubuntu16.04下Detectron+caffe2(Pytorch)安装配置过程_张家坎的博客-CSDN博客_caffe2_detectron_ops_gpu.dllhttps://blog.csdn.net/u014236392/article/details/81117287安装caffe2执行sudomakeinstall之后遇到如下问题:/home/Xdn/cu
- 进场 行礼 问候 退场
东方芭蕾Lily
1.当听到响铃声,按编号排队依次进入考场。tips:面带微笑,优雅自信且有礼貌的边看着考试官边跑到准备问好的位置。步伐轻盈像一阵风样,到位置站好一位脚,保持挺拔向上体态。小仙女就是你们。2.行礼问候Examier:(考试官)GillianMccafferyGoodmorning/afternoongirlsGoodmorning/afrernoonmadamorMs.MccafferyQuesti
- YOLOv5独家改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
AI小怪兽
YOLOv5原创自研YOLOcaffe目标检测深度学习人工智能
本文独家改进:一种超轻量高效动态上采样DySample,具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv5网络中的nn.Upsample在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。收录YOLOv5原创自研https://blog.csdn.net/m0_63774211/category_12511931.html全网独家首发创新(原创),适合paper!!!2024年计算
- caffez转ncnn,及环境配置
宁静深远
软件安装
一、安装ncnn1、安装protobuf(a)、gitclonehttps://github.com/google/protobuf(b)、自动生成configure配置文件,运行:./autogen.sh(c)、配置环境:./configure(d)、编译源代码:make(e)、安装:sudomakeinstall(f)、刷新动态库:sudoldconfig2、安装ncnn(a)、mkdirco
- 最新姿态估计研究进展
a微风掠过
最新姿态估计研究进展自上而下:就是先检测包含人的框,即humanproposal,然后对框子中的人进行姿态估计。一般RCNN(区域CNN就是这个思路)自下而上:先检测keypoint,然后根据热力图、点与点之间连接的概率,根据图论知识,基于PAF(部分亲和字段)将关键点连接起来,将关键点分组到人。1、CMU:openpose研究多人的姿态估计运行环境:caffe自下而上,关键点被分组到人的实例时间
- 智慧云智能教育考试平台展示
barry200890
springbootvue考试javavue.js小程序
智慧云智能教育平台项目简介技术架构1.1后端技术栈:*基于SpringBoot+MybatisPlus+Shiro+mysql5.7+redis+websocket构建.*使用jdk1.8的新特性如:caffeine缓存,lambda表达式.1.2前端技术:*Vue*Vuex*Vxe-Table(文档地址:https://gitee.com/xuliangzhan_admin/vxe-table)
- what is SSD|Single Shot MultiBox Detector
Woooooooooooooo
文章摘选自多篇文章,仅用于学习,在此表示感谢,若有侵权请联系,感谢论文下载地址:https://arxiv.org/abs/1512.02325论文代码:https://github.com/weiliu89/caffe/tree/ssd省去了区域建议网络,直接使用不同尺度featuremap中的cell得到priodbox(和anchor类似),利用卷积可以直接得到box的回归和score而不需
- caffe中的参考模型
雨住多一横
RCNNmode_reference_rcnn_ilsvrc13l.pngcaffenet用于Flickrstyle数据集model_finetune_flickr_style.pngAlexNetmodel_alexnet.pnggooglenetmodel_googlenet.pngcaffenetmodel_reference_caffenet.png
- RT-DETR算法优化改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
AI小怪兽
RT-DETR魔术师算法caffe目标检测YOLO深度学习人工智能
本文独家改进:一种超轻量高效动态上采样DySample,具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv8网络中的nn.Upsample在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。RT-DETR魔术师专栏介绍:https://blog.csdn.net/m0_63774211/category_12497375.html✨✨✨魔改创新RT-DETR引入前沿顶会创新(CVPR
- 「性能提升」扩展 Spring Cache 支持多级缓存
冷冷zz
为什么多级缓存缓存的引入是现在大部分系统所必须考虑的redis作为常用中间件,虽然我们一般业务系统(毕竟业务量有限)不会遇到如下图在随着data-size的增大和数据结构的复杂的造成性能下降,但网络IO消耗会成为整个调用链路中不可忽视的部分。尤其在微服务架构中,一次调用往往会涉及多次调用例如pigoauth2.0的client认证Caffeine来自未来的本地内存缓存,性能比如常见的内存缓存实现性
- Spring Cache
duration~
spring-bootspringjava后端
目录标题SpringCache1介绍2常用注解3入门SpringCache1介绍SpringCache是一个框架,实现了基于注解的缓存功能,只需要简单地加一个注解,就能实现缓存功能。SpringCache提供了一层抽象,底层可以切换不同的缓存实现,例如:EHCacheCaffeineRedis(常用)起步依赖:org.springframework.bootspring-boot-starter-
- Caffeine与Spring cache的各种注解操作
500了
springjava后端
前言Caffeine是一个基于Java8的进程内缓存框架,它使用乐观锁技术来提高并发吞吐量,并被誉为最快的缓存之一。Caffeine是内存型缓存,即缓存与调用者属于同一个应用,具体地说是属于同一个JVM。它的设计目标是提供高性能、高命中率以及低内存占用的本地缓存解决方案,被描述为GuavaCache的加强版和“新一代缓存”。关于Caffeine的使用,其提供了多种灵活的配置选项:自动加载数据:可以
- 缓存组件Caffeine的使用
月月大王
Java#工具类缓存
caffeine是一个高性能的缓存组件,在需要缓存数据,但数据量不算太大,不想引入redis的时候,caffeine就是一个不错的选择。可以把caffeine理解为一个简单的redis。1、导入依赖com.github.ben-manes.caffeinecaffeine2.9.3导入是要注意版本,最开始我用的版本是3.1.1,不过启动是的时候会报错,这是因为我用的是jdk1.8,需要降低一下版本
- Makefile.config
walkMAN_aholic
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).USE_CUDNN:=1#CPU-onlyswitch(
- 缓存Caffeine之W-TinyLFU淘汰策略
georgesnoopy
guava缓存java淘汰策略Caffeine
我们常见的缓存是基于内存的缓存,但是单机的内存是有限的,不能让缓存数据撑爆内存,所有需要缓存淘汰机制。https://mp.csdn.net/editor/html/115872837中大概说明了LRU的缓存淘汰机制,以及基于LRU的著名实现guavacache。除了LRU淘汰策略外,其是常见的还有FIFO以及LFU,只是说目前用的最多的是LRU。LRULRU记录了缓存中数据项的访问时间,在缓存数
- Caffeine史上最快的内存缓存
奇遇少年
缓存java
引言在现代的Web应用程序中,缓存是提升性能,减少数据库负载,加快响应速度的关键技术之一。SpringBoot作为一个简化Spring应用开发的框架,提供了与多种缓存技术集成的支持。Caffeine是一个高性能,灵活的缓存库,它可以作为本地缓存在Java应用中广泛使用。本文将详细介绍如何在SpringBoot项目中集成Caffeine缓存,并通过一个实例来展示它的使用。什么是Caffeine缓存?
- 如何解决caffe和video-caffe不能使用cudnn8编译的问题
Arnold-FY-Chen
video-caffe深度学习Caffevideo-caffecaffe深度学习cudnn8cudnn
因为caffe之类的代码很久不更新了,只支持到了使用cudnn7.x,在使用了cudnn8的环境下编译caffe或video-caffe时,会在src/caffe/layers/cudnn_conv_layer.cpp等文件里出错:error:identifier"CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT"isundefinederror:iden
- Redis 6.0 客户端缓存
极简博客
javaredis
不难发现,我们经常将Redis作为系统的缓存服务,但你有没有发现。在我们每次操作Redis时,都需要发送网络请求。这样就避免不了网络的开销。但如何解决这个问题呢?我们引入了本地缓存来解决此问题。查询逻辑从先前的直接查询转变为:先通过查询本地缓存,不存在再去远程查找然后设置到本地缓存-适用于分布式客户端缓存。有没有感觉像我们使用过的本地缓存Guava、Caffeine等一样?有啥特别的?这里Redi
- [图像算法]-(yolov5.train)-GPU架构中的半精度fp16与单精度fp32计算
蒸饺与白茶
GPU架构中的半精度与单精度计算 由于项目原因,我们需要对darknet中卷积层进行优化,然而对于像caffe或者darknet这类深度学习框架来说,都已经将卷积运算转换成了矩阵乘法,从而可以方便调用cublas库函数和cudnn里tiling过的矩阵乘。 CUDA在推出7.5的时候提出了可以计算16位浮点数据的新特性。定义了两种新的数据类型half和half2.之前有师弟已经DEMO过半精度
- caffe搭建深度神经网络
A异乡人_7a44
利用Caffe进行深度神经网络训练第一步需要搞懂几个重要文件:solver.prototxttrain_val.prototxttrain.shsolver.prototxtsolver这个文件主要存放模型训练所用到的一些超参数:net:=指定待训练模型结构文件,即train_val.prototxttest_interval:=测试间隔,即每隔多少次迭代进行一次测试test_initializa
- deep-visualization-toolbox可视化安装
2014wzy
caffe框架
运行环境:Linux+caffe步骤:Step0:Compilemasterbranchofcaffe本代码运行的前提是,配置过caffe。因为配置caffe的过程中会出现一些依赖库,正是本代码所需要的。http://blog.csdn.NET/u011204487/article/details/51596471是配置caffe的过程。注意Makefile.config中的CPU_ONLY:=1
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,