应用KNN算法识别手机传感器数据交通方式

应用KNN算法识别手机传感器数据交通方式_第1张图片

应用KNN算法识别手机传感器数据交通方式_第2张图片

应用KNN算法识别手机传感器数据交通方式_第3张图片

应用KNN算法识别手机传感器数据交通方式_第4张图片

应用KNN算法识别手机传感器数据交通方式_第5张图片

应用KNN算法识别手机传感器数据交通方式_第6张图片

应用KNN算法识别手机传感器数据交通方式_第7张图片

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    #print(sortedDistIndicies)
    #print(len(sortedDistIndicies))
    classCount={}          
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        voteIlabel=voteIlabel[0]####这一步不做就会报错
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        #print('step:',i,' voteIlabel:',voteIlabel)
        #print(classCount)
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    #print('result:',sortedClassCount[0][0])
return sortedClassCount[0][0]

应用KNN算法识别手机传感器数据交通方式_第8张图片

def autoNorm(dataSet):
    minVals = dataSet.min(axis=0)
    maxVals = dataSet.max(axis=0)
    ranges = maxVals - minVals
    normDataSet = np.zeros(np.shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - np.tile(minVals, (m,1))
    normDataSet = normDataSet/np.tile(ranges, (m,1))   #element wise divide
return normDataSet, ranges, minVals
应用KNN算法识别手机传感器数据交通方式_第9张图片
def TrafficClassTest():   
    normMat, ranges, minVals = autoNorm(data_xnew)
    normMat1, ranges1, minVals1 = autoNorm(Data_xnew)
    numTestVecs = Data_ynew.shape[0]
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat1[i,:],normMat,data_ynew,3)
        print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult,Data_ynew[i]))
        if (classifierResult != Data_ynew[i]): errorCount += 1.0
    print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))

应用KNN算法识别手机传感器数据交通方式_第10张图片

应用KNN算法识别手机传感器数据交通方式_第11张图片

1 识别率分布图

  标签\预测

1:步行

2:自行车

3:公交车

4:小汽车

求和

1:步行

0.9767

0.0021

0.0163

0.0049

1.0000

2:自行车

0.0024

0.9904

0.0072

0.0000

1.0000

3:公交车

0.0230

0.0000

0.9641

0.0129

1.0000

4:小汽车

0.0138

0.0000

0.0453

0.9409

1.0000

应用KNN算法识别手机传感器数据交通方式_第12张图片

应用KNN算法识别手机传感器数据交通方式_第13张图片


附录程序源代码:

#-*- coding=utf-8 -*-
##一次平滑用于预测
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import operator


##定义用于将多维list整合成为1维list的函数
def flat(l): 
    for k in l: 
        if not isinstance(k, (list, tuple)): 
            yield k 
        else: 
            yield from flat(k)


SCALE = 60#定义SCALE长度,滚动每段数据实际为2SCALE长度
data_x=[]
data_y=[]#训练集

Data_x=[]
Data_y=[]#测试集
##定义文件读入函数
def choose_file(filenumber):
    traindata = pd.read_excel('train%s.xlsx'%filenumber)
    tempspeed=[]
    tempfirstplant=[]
    tempmeans=[]
    tempspeed.append(list(traindata['speed']))
    tempmeans.append(list(traindata['means']))
    tempfirstplant.append(list(traindata['firstplant']))
    tempspeed = list(flat(tempspeed))
    tempmeans = list(flat(tempmeans))
    tempfirstplant=list(flat(tempfirstplant))
    for i in range(SCALE):#每个文件前SCALE个数据的读入
        speed=np.array(tempspeed[0 : i+SCALE])
        speed_in=tempspeed[i]
        firstplant=tempfirstplant[i]
        mean_speed=speed.mean()
        max_speed=speed.max()
        std_speed=speed.std()
        data_x.append(list([speed_in,firstplant,mean_speed,max_speed,std_speed]))
        data_y.append(list([tempmeans[i]]))
    for i in range(SCALE,(len(tempspeed)-SCALE)):#每个文件可以正常选择SCALE的数据的读入
        speed = np.array(tempspeed[i-SCALE : i+SCALE])
        speed_in=tempspeed[i]
        firstplant=tempfirstplant[i]
        mean_speed=speed.mean()
        max_speed=speed.max()
        std_speed=speed.std()
        data_x.append(list([speed_in,firstplant,mean_speed,max_speed,std_speed]))
        data_y.append(list([tempmeans[i]]))
    for i in range((len(tempspeed)-SCALE),len(tempspeed)):#每个文件尾部的SCALE个数据的读入
        speed=np.array(tempspeed[i-SCALE:(len(tempspeed))])
        speed_in=tempspeed[i]
        firstplant=tempfirstplant[i]
        mean_speed=speed.mean()
        max_speed=speed.max()
        std_speed=speed.std()
        data_x.append(list([speed_in,firstplant,mean_speed,max_speed,std_speed]))
        data_y.append(list([tempmeans[i]]))
    return data_x,data_y#返回用于训练模型的x和y

##读入5个出行个体的训练文件
l=[1,2,3,4,5,6]
for i in l:
    choose_file(i)
data_y=np.array(data_y)

import  random
a=range((len(data_x)))
b=random.sample(a,int(0.8*len(data_x)))
c=list(set(a).difference(set(b))) 
data_xnew=[]
data_ynew=[]
Data_xnew=[]
Data_ynew=[]
for i in b:
        data_xnew.append(data_x[i])
        data_ynew.append(data_y[i])
for i in c:
        Data_xnew.append(data_x[i])
        Data_ynew.append(data_y[i])


data_xnew=np.array(data_xnew)
data_ynew=np.array(data_ynew)
Data_xnew=np.array(Data_xnew)
Data_ynew=np.array(Data_ynew)


def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    #print(sortedDistIndicies)
    #print(len(sortedDistIndicies))
    classCount={}          
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        voteIlabel=voteIlabel[0]####这一步不做就会报错
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        #print('step:',i,' voteIlabel:',voteIlabel)
        #print(classCount)
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    #print('result:',sortedClassCount[0][0])
    return sortedClassCount[0][0]

def autoNorm(dataSet):
    minVals = dataSet.min(axis=0)
    maxVals = dataSet.max(axis=0)
    ranges = maxVals - minVals
    normDataSet = np.zeros(np.shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - np.tile(minVals, (m,1))
    normDataSet = normDataSet/np.tile(ranges, (m,1))   #element wise divide
    return normDataSet, ranges, minVals
CLASSFIERRESULT=[]
def TrafficClassTest():   
    normMat, ranges, minVals = autoNorm(data_xnew)
    normMat1, ranges1, minVals1 = autoNorm(Data_xnew)
    numTestVecs = Data_ynew.shape[0]
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat1[i,:],normMat,data_ynew,3)
        CLASSFIERRESULT.append(classifierResult)
        #print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, Data_ynew[i]))
        if (classifierResult != Data_ynew[i]): errorCount += 1.0
    print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
    print(errorCount,numTestVecs)
TrafficClassTest()
CLASSFIERRESULT = np.array(CLASSFIERRESULT)
#Data_ynew标签(真实)true;CLASSFIERRESULT预测pre
count1,count2,count3,count4=0,0,0,0
true_walk = Data_ynew[Data_ynew==1].shape[0]
true_walk_index = np.argwhere(Data_ynew==1)[:,0]
for o in true_walk_index:
    if CLASSFIERRESULT[o]==1:
        count1+=1
    elif CLASSFIERRESULT[o]==2:
        count2+=1
    elif CLASSFIERRESULT[o]==3:
        count3+=1
    elif CLASSFIERRESULT[o]==4:
        count4+=1
    else:pass  
w_w,w_b,w_s,w_c=count1/true_walk,count2/true_walk,count3/true_walk,count4/true_walk


count1,count2,count3,count4=0,0,0,0
true_bike = Data_ynew[Data_ynew==2].shape[0]
true_bike_index = np.argwhere(Data_ynew==2)[:,0]
for o in true_bike_index:
    if CLASSFIERRESULT[o]==1:
        count1+=1
    elif CLASSFIERRESULT[o]==2:
        count2+=1
    elif CLASSFIERRESULT[o]==3:
        count3+=1
    elif CLASSFIERRESULT[o]==4:
        count4+=1
    else:pass
b_w,b_b,b_s,b_c=count1/true_bike,count2/true_bike,count3/true_bike,count4/true_bike


count1,count2,count3,count4=0,0,0,0
true_bus = Data_ynew[Data_ynew==3].shape[0]
true_bus_index = np.argwhere(Data_ynew==3)[:,0]
for o in true_bus_index:
    if CLASSFIERRESULT[o]==1:
        count1+=1
    elif CLASSFIERRESULT[o]==2:
        count2+=1
    elif CLASSFIERRESULT[o]==3:
        count3+=1
    elif CLASSFIERRESULT[o]==4:
        count4+=1
    else:pass
s_w,s_b,s_s,s_c=count1/true_bus,count2/true_bus,count3/true_bus,count4/true_bus


count1,count2,count3,count4=0,0,0,0
true_car = Data_ynew[Data_ynew==4].shape[0]
true_car_index = np.argwhere(Data_ynew==4)[:,0]
for o in true_car_index:
    if CLASSFIERRESULT[o]==1:
        count1+=1
    elif CLASSFIERRESULT[o]==2:
        count2+=1
    elif CLASSFIERRESULT[o]==3:
        count3+=1
    elif CLASSFIERRESULT[o]==4:
        count4+=1
    else:pass
c_w,c_b,c_s,c_c=count1/true_car,count2/true_car,count3/true_car,count4/true_car
print('line1',w_w,w_b,w_s,w_c)
print('line2',b_w,b_b,b_s,b_c)
print('line3',s_w,s_b,s_s,s_c)
print('line4',c_w,c_b,c_s,c_c)



你可能感兴趣的:(机器学习与模式识别课程)