- 蓝牙技术学习:从基础到进阶路线图
byte轻骑兵
嵌入式智慧开发探索蓝牙技术探索与应用人工智能蓝牙
目录一、基础入门阶段1.1.蓝牙技术概述1.1.1.蓝牙技术的起源1.1.2.发展历程1.1.3.基本原理1.1.4.应用场景1.2.蓝牙版本与标准1.2.1.蓝牙版本1.2.2.主要特性概述1.2.3.蓝牙的类型1.2.4.蓝牙低功耗(BLE)与经典蓝牙(BR/EDR)的区别与联系1.3.蓝牙协议栈基础1.3.1.蓝牙协议栈的组成1.3.2.各层协议的作用和相互关系二、进阶学习阶段2.1.蓝牙设
- 光学超表面的人工智能
Luis Li 的猫猫
人工智能专区基础及拓展超表面设计人工智能机器学习算法
光学超表面,即能够控制光传播的平面人工介质,正在从实验室过渡到商业应用。这种转变需要先进的超结构和超表面设计,考虑可制造性并通过后处理算法提高光学性能。人工智能,尤其是机器学习的优化,为这些需求提供了解决方案。该文章系统地回顾了AI在三个关键领域的潜在影响:AI支持的超表面可制造性设计(DFM)、超越经典局部相位近似的设计以及AI赋能的计算后端。Introduction超表面是超材料的二维(2D)
- uniapp使用蓝牙,usb,局域网,打印机打印
wangDer_me
uni-app
使用流程(支持安卓和iOS)引入SDK引入原生插件包地址如下https://github.com/oldfive20250214/UniPrinterDemo连接设备安卓支持经典蓝牙、ble蓝牙、usb、局域网(参考API)iOS支持ble蓝牙、局域网(参考API)拼接模版声明对象constprinter=uni.requireNativePlugin(“Printer”)tspl模版用例1(打印
- 想知道的都有!大模型的定义、基本架构、训练、经典代表、应用和挑战全解析
和老莫一起学AI
语言模型人工智能自然语言处理学习大模型ai转行
导读都2024年了,学习AI相关的人或多或少的听说过“大模型”。目前,大模型技术以其庞大的参数规模和卓越的性能,成为了推动行业进步的新引擎。本文将带您深入探索大模型的神秘世界,从其定义、基本原理、训练三步骤,到Prompt技术的巧妙应用,以及大模型在各行业的广泛应用和面临的挑战。无论您是AI领域的专业人士,还是对技术充满好奇的普通读者,本文都将为您提供一个全面、深入的大模型知识图谱。1、大模型的定
- 十代主板改win7_英特尔10代CPU完美装win7|新主板新CPU装win7 Bios设置
weixin_39867125
十代主板改win7
英特尔七代、八代和九代CPU都经常有用户问怎么装win7,就算是现在英特尔已经出到了十代CPU,还是会有用户问,怎么装win7,不得不说win7是个在Windows系统中最经典的系统之一,那么intel第十代酷睿处理器还可以安装win7吗?可以。新组装机用户,最常用的搭配就是intel第十代酷睿处理器+B460/Z490主板(400系列主板)。不过在安装win7的过程中USB设备不能使用以及没有核
- 2025年渗透测试面试题总结-字某跳动-安全研究实习生(三面)(题目+回答)
独行soc
2025年渗透测试面试指南面试职场和发展web安全安全linux服务器
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录字某跳动-安全研究实习生(三面)一、攻防演练经典案例分析二、CSRF漏洞修复方案三、Java代码审计流程四、SQL注入防御体系五、域名访问技术解析六、登录页安全风险七、安全工具开发实践字某跳动-安全研究实习生(三面)聊聊攻防演练中比较得意,印象深刻的一次经历CSRF漏
- 重温设计模式--10、单例模式
越甲八千
【C++设计模式】设计模式单例模式
文章目录单例模式(SingletonPattern)概述单例模式的实现方式及代码示例1.饿汉式单例(在程序启动时就创建实例)2.懒汉式单例(在第一次使用时才创建实例)单例模式的注意事项应用场景C++代码懒汉模式-经典版(线程不安全)经典版优化(线程安全)内部静态变量的懒汉实现饿汉模式单例模式(SingletonPattern)概述定义:单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供
- 2025年渗透测试面试题总结-腾某讯-技术安全实习生(题目+回答)
独行soc
2025年渗透测试面试指南安全面试护网网络2015年
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录腾讯-技术安全实习生一、SQL二次注入原理与修复二、SQL注入过滤information的绕过方法三、Redis未授权访问漏洞四、渗透测试标准化流程mermaid五、CTF经典题型案例六、文件下载漏洞利用七、HTTP不出网的命令执行漏洞处理八、隧道通信技术细节(以DN
- MVC模式全解析
非德77
mvc
MVC模式:概念与架构基石在软件开发的广袤宇宙中,MVC模式宛如一颗璀璨的恒星,照亮了无数开发者前行的道路。它是一种经典的软件架构模式,全称为Model-View-Controller,即模型-视图-控制器,将应用程序清晰地划分为三个核心部分:模型(Model)、视图(View)和控制器(Controller)。这种架构方式犹如为程序搭建了一个稳固的骨架,使得代码的组织和管理更加高效,也为团队协作
- C++ 学生成绩管理系统
非德77
c++算法开发语言
一、项目背景与核心需求成绩管理系统是高校教学管理的重要工具,本系统采用C++面向对象编程实现,主要功能模块包括:学生信息管理(学号/姓名/3门课程成绩)成绩增删改查(CRUD)操作数据持久化存储统计分析与报表生成用户友好交互界面二、系统架构设计1.类结构设计采用经典的MVC分层思想:示意图如下:┌──────────────┐┌──────────────┐│Student││ScoreSyste
- 【数学建模技术】路径规划算法-Dijkstra算法
一键难忘
数学建模技术超入门Dijkstra数学建模算法路径规划算法
路径规划算法-Dijkstra算法1.引言路径规划是许多领域中的核心问题,尤其是在机器人导航、地理信息系统(GIS)、交通管理等方面。路径规划算法的主要目标是寻找从起点到终点的最短路径。Dijkstra算法作为一种经典的单源最短路径算法,广泛应用于各种实际问题中。本篇文章将详细探讨Dijkstra算法的原理、应用场景,并通过代码实例进行深入解析。2.Dijkstra算法原理Dijkstra算法是由
- NL2SQL技术方案系列(5):金融领域NL2SQL技术方案以及行业案例实战讲解3--非LLM技术方案
汀、人工智能
LLM工业级落地实践prompt人工智能大语言模型NL2SQLText2SQL
NL2SQL技术方案系列(5):金融领域NL2SQL技术方案以及行业案例实战讲解3NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶系列(1):DB-GPT-Hub、SQLco
- NL2SQL技术方案系列(1):NL2API、NL2SQL技术路径选择;LLM选型与Prompt工程技巧,揭秘项目落地优化之道
汀、人工智能
LLM工业级落地实践prompt人工智能大语言模型NL2SQLText2SQLAI大模型自然语言处理
NL2SQL技术方案系列(1):NL2API、NL2SQL技术路径选择;LLM选型与Prompt工程技巧,揭秘项目落地优化之道NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶
- NL2SQL进阶系列(2):DAIL-SQL、DB-GPT开源应用实践详解[Text2SQL]
汀、人工智能
LLM工业级落地实践gpt人工智能深度学习大语言模型sqlNL2SQLText2SQL
NL2SQL进阶系列(2):DAIL-SQL、DB-GPT开源应用实践详解[Text2SQL]NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL任务的目标是将用户对某个数据库的自然
- Android 蓝牙工具类封装:支持经典蓝牙与 BLE,兼容高版本权限
tangweiguo03051987
androidandroidgitee
为了优化经典蓝牙(ClassicBluetooth)和低功耗蓝牙(BluetoothLowEnergy,BLE)的操作,我们可以将功能封装到一个工具类中,支持扫描、连接、通信,并兼容高版本Android的动态权限申请。以下是完整的工具类实现。工具类功能经典蓝牙:扫描设备。连接设备。发送和接收数据。BLE蓝牙:扫描设备。连接设备。发送和接收数据(通过GATT特征值)。权限管理:动态申请权限(包括AC
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- 基于STC89C52的8x8点阵贪吃蛇游戏
@小张要努力
游戏单片机嵌入式硬件51单片机proteus
引言随着电子技术的不断发展,利用单片机进行趣味项目开发成为了电子爱好者们热衷的活动。STC89C52单片机作为一款经典的8位单片机,以其丰富的资源、较高的性价比和简单的开发流程,在众多电子项目中得到广泛应用。8x8点阵作为一种常见的显示设备,能够以直观的方式展示图像和简单动画。本文将介绍如何基于STC89C52单片机设计并实现一个8x8点阵的贪吃蛇游戏,同时借助Proteus软件进行电路仿真,以验
- 算法系列之数据结构-Huffman树
修己xj
算法算法数据结构java
在数据压缩领域,Huffman编码是一种经典的无损压缩算法,而Huffman树则是实现这种编码的关键数据结构。它以其高效性和简洁性被广泛应用于各种场景,从文件压缩到通信协议,都离不开Huffman树的身影。本文将深入探讨Huffman树的原理、构建过程以及其Java如何实现Huffman树。Huffman树的构建步骤Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于
- Day16 洛谷真题讲解
流星雨.又来临
c++算法开发语言
呀呀呀呀,嘻嘻嘻嘻嘻嘻嘻嘻嘻嘻嘻,太开心了,终于看到了一丝丝快乐的光环,终于ac了大家先来看一眼这道题,我觉得其实还是真的蛮经典的,刚开始的时候我心思看看如何能够把每个数给他存进一个数组里面,后来我发现原来,这个题目,只要在深深的探查一下,就会慢慢发现其中的道理,于是我重新开始想方法,okl,终于找到了一个这个好个找规律,我真觉得这个普及-的题,好像每一道都有点找规律。大家仔细看我上面的那个演草纸
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- 【Flink银行反欺诈系统设计方案】1.短时间内多次大额交易场景的flink与cep的实现
*星星之火*
Flink反欺诈flink大数据flink反欺诈
【flink应用系列】1.Flink银行反欺诈系统设计方案1.经典案例:短时间内多次大额交易1.1场景描述1.2风险判定逻辑2.使用Flink实现2.1实现思路2.2代码实现2.3使用Flink流处理3.使用FlinkCEP实现3.1实现思路3.2代码实现4.总结1.经典案例:短时间内多次大额交易1.1场景描述规则1:单笔交易金额超过10,000元。规则2:同一用户在10分钟内进行了3次或更多次交
- 基于51单片机的多路抢答器犯规可设置时间proteus仿真
weixin_46018686
51单片机proteus嵌入式硬件
地址:https://pan.baidu.com/s/1MB7Y7kqFeb9-97vwRuwHWA提取码:1234仿真图:芯片/模块的特点:AT89C52/AT89C51简介:AT89C52/AT89C51是一款经典的8位单片机,是意法半导体(STMicroelectronics)公司生产的一系列单片机之一。它基于8051内核,并具有许多与其兼容的特性。主要特点如下:内部存储器:具有8KB的闪存
- 深度学习主流经典框架PyTorch(day2)
inquisitor.dom
深度学习pytorch人工智能
五、Tensor数据转换5.1张量转numpy浅拷贝调用numpy()方法可以把Tensor转换为Numpy,此时内存是共享的。#张量转numpydata_tensor=torch.tensor([[1,2,3],[4,5,6]])data_numpy=data_tensor.numpy()print(type(data_tensor),type(data_numpy))#他们内存是共享的data
- Paper Reading | AI & 数据库融合经典论文回顾
数据库人工智能阅读
人工智能(AI)和数据库(DB)在过去的50年里得到了广泛的研究,随着数据库近年来的不断发展,数据库开始与人工智能结合,数据库和人工智能(AI)可以相互促进。一方面,AI可以使数据库更加智能化(AI4DB)。例如,传统的数据库优化技术无法满足大规模数据库实例、各种应用程序和多样化用户的高性能要求,尤其是在云上。幸运的是,基于机器学习的技术可以缓解这个问题。另一方面,数据库技术可以优化AI模型(DB
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- AI 智能:开拓未知疆域的科技先锋
Kurbaneli
人工智能科技量子计算
在当今科技迅猛发展的浪潮中,AI智能无疑是最耀眼的弄潮儿,持续重塑着我们生活与工作的方方面面。然而,在这片广袤的技术海洋里,还有诸多潜藏在深处、尚未被广泛挖掘与讨论的领域,它们代表着AI智能未来发展的新方向,这些独特视角与内容或许在CSDN这类平台上也难寻踪迹。量子AI:解锁计算新纪元量子计算与AI的融合,正孕育出一种前所未有的强大力量——量子AI。传统AI受限于经典计算机的运算能力,在处理某些复
- Python Turtle绘图:重现汤姆劈树的经典瞬间
栗子风暴
Python的Turtle绘画python开发语言
PythonTurtle绘图:重现汤姆劈树的经典瞬间前言往期绘画>>点击进所有绘画效果图代码前言《汤姆与杰瑞》(TomandJerry)是我们小时候经常看的一部经典的动画作品。自播出以来就受到了广大观众的喜爱和追捧。它不仅成为了一部经典的动画作品,还衍生出了众多周边产品和续集作品。该动画获得了七项奥斯卡大奖,成为了华纳旗下当之无愧的看家明星。其中汤姆飞行劈树的画面记忆犹新,让我们使用Python的
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 【Qt】Qt Widgets和QML(Qt Quick)开发界面的区别
£އއ昔年
qt开发语言
Qt提供了两种主要的UI技术:QtWidgets和QML(QtQuick)。它们的核心区别主要体现在使用方式、架构、性能、开发难度和适用场景等方面。1.QtWidgetsvs.QML总体对比对比项QtWidgetsQML(QtQuick)语言C++(带QtUI库)QML+JavaScript(底层C++)渲染方式传统窗口系统控件(原生或模拟)基于OpenGL,使用GPU加速UI风格经典桌面UI(W
- 量子算法:英译名、概念、历史、现状与展望?
lisw05
量子计算计算机科学技术
李升伟整理####英译名量子算法的英文为**QuantumAlgorithm**。####概念量子算法是利用量子力学原理(如叠加态、纠缠态和干涉)设计的算法,旨在通过量子计算机高效解决经典计算机难以处理的问题。其核心在于利用量子比特(qubit)的并行计算能力,显著提升计算效率。####历史1.**1980年代**:RichardFeynman提出量子计算概念,认为量子计算机可以模拟经典计算机无法
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号