1、hive 命令行模式,直接输入#/hive/bin/hive的执行程序,或者输入#hive --service cli
2、 hive web界面的 (端口号9999) 启动方式#hive --service hiveserver
注意:hiveserver不能和hwi服务同时启动使用。
4、使用dbveare工具
需要将presto的jar添加进来并配置连接
使用java代码来连接hive时,驱动可以选择使用jdbc,也可以选择使用presto
HiveServer使用thrift服务来为客户端提供远程连接的访问端口,在JDBC连接Hive之前必须先启动HiveServer。
hive --service hiveserver
hiveserver默认端口是10000,可以使用hive --service hiveserver -p 10002,更改默认启动端口,此端口也是JDBC连接端口。
1、直接通过jdbc
package com.lin.bdp.common.utils;
import java.lang.reflect.Field;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.List;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.lin.bdp.common.vo.Visitor;
/**
*
* 功能概要:hive客户端工具
*
* @author linbingwen
* @since 2016年10月20日
*/
public class HiveJdbcClient {
private static final Logger logger = LoggerFactory.getLogger(HiveJdbcClient.class);
public static final char UNDERLINE = '_';
private static String driverName;
private static String url;
private static String user;
private static String password;
private static class LazyHolder {
private static final HiveJdbcClient INSTANCE = new HiveJdbcClient();
}
public static final HiveJdbcClient getInstance() {
return LazyHolder.INSTANCE;
}
/**
* 初始化参数
* @author linbingwen
* @since 2016年10月20日
*/
private void init() {
driverName = ConfigLoader.getProperty("hive.jdbc.driverName");
url = ConfigLoader.getProperty("hive.jdbc.url");
user = ConfigLoader.getProperty("hive.jdbc.user");
password = ConfigLoader.getProperty("hive.jdbc.password");
}
private void initPresto() {
driverName ="com.facebook.presto.jdbc.PrestoDriver";
url = "jdbc:presto://10.78.104.5:8080/hive/ods_uba";
user = "presto";
password = "Admin@123";
}
private HiveJdbcClient() {
init();
}
/**
* 获取连接
* @author linbingwen
* @since 2016年10月20日
* @return
* @throws ClassNotFoundException
* @throws SQLException
*/
private Connection getConnection() throws ClassNotFoundException, SQLException {
Class.forName(driverName);
Connection conn = DriverManager.getConnection(url, user, password);
return conn;
}
/**
* 按条件查找
* @author linbingwen
* @since 2016年10月20日
* @param clazz
* @param sql
* @return
* @throws Exception
*/
public List find(Class clazz, String sql) throws Exception {
if (sql == null || sql.length() == 0) {
logger.warn("查询sql语句不能为空");
return new ArrayList();
}
Connection connection = null;
PreparedStatement preState = null;
ResultSet rs = null;
try {
connection = getConnection();
Statement stmt = connection.createStatement();
rs = stmt.executeQuery(sql);
return (List) handler(clazz, rs);
} catch (Exception e) {
logger.error("sql = {}执行出错,Exception = {}", sql, e.getLocalizedMessage());
throw e;
} finally {
release(connection,preState,rs);
}
}
/**
* 释放资源
*
* @author linbingwen
* @since 2016年8月31日
* @param conn
* @param st
* @param rs
*/
private void release(Connection conn, Statement st, ResultSet rs) {
if (rs != null) {
try {
rs.close();
} catch (Exception e) {
e.printStackTrace();
}
rs = null;
}
if (st != null) {
try {
st.close();
} catch (Exception e) {
e.printStackTrace();
}
st = null;
}
if (conn != null) {
try {
conn.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
/**
* 下划线字段转成陀峰字段
* @author linbingwen
* @since 2016年10月20日
* @param param
* @return
*/
private String underlineToCamel(String param) {
if (param == null || param.isEmpty()) {
return null;
}
int len = param.length();
StringBuilder sb = new StringBuilder(len);
for (int i = 0; i < len; i++) {
char c = param.charAt(i);
if (c == UNDERLINE) {
if (++i < len) {
sb.append(Character.toUpperCase(param.charAt(i)));
}
} else {
sb.append(c);
}
}
return sb.toString();
}
/**
* 组装list对象
* @author linbingwen
* @since 2016年10月20日
* @param clazz
* @param rs
* @return
* @throws Exception
*/
private Object handler(Class clazz, ResultSet rs) throws Exception {
List list = new ArrayList();
try {
while (rs.next()) {
Object bean = clazz.newInstance();
ResultSetMetaData meta = rs.getMetaData();
int count = meta.getColumnCount();
for (int i = 0; i < count; i++) {
String columnName = meta.getColumnName(i + 1);
String name = columnName;
if (columnName.contains(".")) {
String[] split = columnName.split("\\.");
if (split.length != 2) {
throw new Exception("输入的表名不正确!");
}
name =split[1];
}
Object value = rs.getObject(columnName);
name = underlineToCamel(name.toLowerCase());
try {
Field f = bean.getClass().getDeclaredField(name);
if (f != null) {
f.setAccessible(true);
f.set(bean, value);
}
} catch (NoSuchFieldException e) {
logger.error("表中字段:{}在类:{}没有对应的属性", name, clazz);
} catch (IllegalArgumentException e) {
logger.error("表中字段:{}在类:{}对应属性类型不一到", name, clazz);
}
}
list.add(bean);
}
} catch (Exception e) {
throw e;
}
logger.info("hiveHandler successed the total size is:{}",list.size());
return list;
}
@Override
public String toString() {
return "HiveJdbcClient driverName:" + driverName + " url:" + url + " user:" + user + " password:" + password;
}
public List export() throws ClassNotFoundException, SQLException {
String showtablesSQL = "show tables";
List tableList = new ArrayList();
List tableNameList = new ArrayList();
Connection conn = getConnection();
Statement stmt = null;
ResultSet tableRs = null; // 存库元数据
ResultSet colRs = null;//存储表元数据
try {
stmt = conn.createStatement();
stmt.executeQuery("use ods_uba");
//获取表名
tableRs = stmt.executeQuery(showtablesSQL);
while (tableRs.next()) {
String table = tableRs.getString(1);
tableNameList.add(table);
}
//获取表结构
com.lin.bdp.common.utils.Field field = null;
Table table = null;
for (int i = 0; i < tableNameList.size(); i++) {
String descTableSQL = "describe ";
List fieldList = new ArrayList();
descTableSQL = descTableSQL + tableNameList.get(i).trim();//拼接sql
colRs = stmt.executeQuery(descTableSQL);
while (colRs.next()) {
field = new com.lin.bdp.common.utils.Field();
field.setColumnName(colRs.getString(1));
field.setTypeName(colRs.getString(2));//测试大小
fieldList.add(field);
}
table = new Table();
table.setTableName(tableNameList.get(i).trim());
table.setField(fieldList);
System.out.println(table);
tableList.add(table);
}
} catch (SQLException ex) {
} finally {
if (colRs != null) {
try {
colRs.close();
} catch (SQLException ex) {
}
}
if (tableRs != null) {
try {
tableRs.close();
} catch (SQLException ex) {
}
}
if (conn != null) {
try {
conn.close();
} catch (SQLException ex) {
}
}
}
return tableList;
}
public static void main(String[] args) {
HiveJdbcClient hiveJdbcClient = HiveJdbcClient.getInstance();
try {
hiveJdbcClient.export();
} catch (Exception e) {
e.printStackTrace();
}
System.exit(0);
}
}
其中对应的配置文件:
对应的field.java
public class Field {
private String columnName;
private String typeName;
private int columnSize;
private int decimal_digits;
private int nullable;
public Field() {
}
public Field(String columnName, String typeName, int columnSize, int decimal_digits, int nullable) {
this.columnName = columnName;
this.typeName = typeName;
this.columnSize = columnSize;
this.decimal_digits = decimal_digits;
this.nullable = nullable;
}
public String getColumnName() {
return columnName;
}
public void setColumnName(String columnName) {
this.columnName = columnName;
}
public String getTypeName() {
return typeName;
}
public void setTypeName(String typeName) {
this.typeName = typeName;
}
public int getColumnSize() {
return columnSize;
}
public void setColumnSize(int columnSize) {
this.columnSize = columnSize;
}
public int getDecimal_digits() {
return decimal_digits;
}
public void setDecimal_digits(int decimal_digits) {
this.decimal_digits = decimal_digits;
}
public int getNullable() {
return nullable;
}
public void setNullable(int nullable) {
this.nullable = nullable;
}
@Override
public String toString() {
return "Field{" + "columnName=" + columnName + ", typeName=" + typeName + ", columnSize=" + columnSize + ", decimal_digits=" + decimal_digits + ", nullable=" + nullable + '}';
}
}
对应的table.java
package com.lin.bdp.common.utils;
import java.util.List;
public class Table {
private String tableName;
private List field;
public Table() {
}
public Table(String tableName, List field) {
this.tableName = tableName;
this.field = field;
}
public String getTableName() {
return tableName;
}
public void setTableName(String tableName) {
this.tableName = tableName;
}
public List getField() {
return field;
}
public void setField(List field) {
this.field = field;
}
@Override
public String toString() {
return "Table{" + "tableName=" + tableName + ", field=" + field + '}';
}
}
2、直接通过presto
package com.lin.bdp.common.utils;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;
public class HivePrestoClient {
public static void main(String[] args) throws SQLException, ClassNotFoundException{
//jdbc:presto://cdh1:8080/hive/sales
Class.forName("com.facebook.presto.jdbc.PrestoDriver");
Connection connection = DriverManager.getConnection("jdbc:presto://10.78.104.5:8080/hive/ods_uba","presto","Admin@123");
// connection.setCatalog("hive");
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery("select * from ods_uba.visitor_lin limit 10");
// ResultSet rs = stmt.executeQuery("select count(*) uuid,lst_visit_chnl lst_visit_chnl from ods_uba.visitor_lin group by lst_visit_chnl");
while (rs.next()) {
ResultSetMetaData meta = rs.getMetaData();
int count = meta.getColumnCount();
for (int i = 0; i < count; i++) {
String name = meta.getColumnName(i + 1);
Object value = rs.getObject(name);
System.out.println(name + ":" + value);
}
}
rs.close();
connection.close();
System.out.println("exit");
// System.exit(0);
}
}
在presto的安装目录下,etc/config.properties 包含 Presto Server 相关的配置,每一个 Presto Server 可以通时作为 coordinator 和 worker 使用。
http-server.http.port=8080
这个参数为端口的配置
3、用到的相关jar包
com.facebook.presto
presto-jdbc
0.75
org.apache.hadoop.hive
hive-jdbc
0.7.1-cdh3u6
org.apache.hadoop.hive
hive-exec
0.7.1-cdh3u6
org.apache.hadoop.hive
hive-metastore
0.7.1-cdh3u6
org.apache.hadoop.hive
hive-service
0.7.1-cdh3u6
二、Hive脚本执行
Hive也可以直接执行sql脚本,或者通过shell脚本来调用sql脚本
ive脚本的执行方式大致有三种:
1. hive控制台执行
比较简单,不再多说;
2. hive -e "SQL"执行
hive -e "use ods_uba;ALTER TABLE lin DROP PARTITION (opdt='2016-02-04');
当然也可以将这一行代码放在一个shell脚本中来执行:
如下是删除表里一天分区的记录(分区以opdt = 'yyyy-mm-dd')形式存在
#!/bin/sh
source ~/.bashrc
#清数据
doClean(){
partition=$(echo "$path/opdt=$statisDate")
echo "hdfs dfs -rm -r -f $partition"
hive -e "use ods_uba;ALTER TABLE $tableName DROP PARTITION (opdt='$statisDate');"
hdfs dfs -rm -r -f $partition
}
#统计日期默认取昨天
diffday=15
statisDate=`date +"%Y-%m-%d" -d "-"${diffday}"day"`
path=/hive/warehouse/ods_uba.db/$1
#首先判断是否有输入日期,以及输入日期是否合法,如果合法,取输入的日期。不合法报错,输入日期为空,取昨天
if [ $# -eq 0 ]; then
echo "您没有输入参数,请至少输入表名kafka_appchnl_source_log/kafka_web_source_log"
elif [ $# -eq 1 ]; then
echo "您输入的第一个参数为: $1 "
tableName=$1
if [[ "$tableName" == "kafka_appchnl_source_log" ]] || [[ "$tableName" == "kafka_web_source_log" ]]; then
echo "要清除的表名是:$tableName,路径:$path,清除分区的日期:$statisDate"
doClean $tableName $path $statisDate
else
echo "您输入的表名有错,请输入表名kafka_appchnl_source_log/kafka_web_source_log"
fi
elif [ $# -eq 2 ]; then
echo "您输入的第一个参数为: $1,第二个参数 :$2"
tableName=$1
statisDate=$2
if [[ "$tableName" == "kafka_appchnl_source_log" ]] || [[ "$tableName" == "kafka_web_source_log" ]]; then
echo "要清除的表名是:$tableName,路径:$path"
if [ ${#statisDate} -eq 10 ];then
echo "清除分区的日期:$statisDate"
doClean $tableName $path $statisDate
else
echo "您输入日期不合法,请输入yyyy-mm-dd类型参数"
fi
else
echo "您输入的表名有错,请输入表名kafka_appchnl_source_log/kafka_web_source_log"
fi
else
echo "您输入参数多于2个,请重新输入"
fi
执行脚本:
3. hive -f SQL文件执行
如果sql都放在.sql文件中呢?那就用hive -f
新建一个clean.sql内容如下:
use ods_uba;
ALTER TABLE ${hiveconf:tableName} DROP PARTITION (partition_time='${hiveconf:partitionTime}');
执行如下语句就可以删除一个分区
hive -hiveconf tableName=lin -hiveconf partitionTime='2016-01-23' -f clean.sql
这里hiveconf可以用来传递参数
最后,也可以将shell脚本和sql脚本结合一起用。
新建一个如下doClean.sh
#!/bin/sh
. ~/.bashrc
#清数据,注意要传入一个yyyy-mm-dd类型参数
cleanData(){
echo "您要清理数据的日期为:$statisDate"
#生成每小时的查询条件
for i in `seq 24`
do
num=$(echo $i)
doClean $tableName $statisDate $num
done
}
#清数据
doClean(){
echo "输入日期:$statisDate,输入序列号:$num"
timeZone=$(printf "%02d\n" $(expr "$num" - "1"))
partitionTime=$(echo "$statisDate-$timeZone")
echo "清数据的表名:$tableName 分区字段:$partitionTime"
hive -hiveconf tableName=$tableName -hiveconf partitionTime=$partitionTime -f clean.sql
}
#统计日期默认取昨天
diffday=1
statisDate=`date +"%Y-%m-%d" -d "-"${diffday}"day"`
#首先判断是否有输入日期,以及输入日期是否合法,如果合法,取输入的日期。不合法报错,输入日期为空,取昨天
if [ $# -eq 0 ]; then
echo "您没有输入参数,请至少输入表名visit_log/evt_log/chnl_req"
elif [ $# -eq 1 ]; then
echo "您输入的第一个参数为: $1 "
tableName=$1
if [[ "$tableName" == "visit_log" ]] || [[ "$tableName" == "evt_log" ]] || [[ "$tableName" == "chnl_req" ]]; then
echo "要清除的表名是:$tableName,清除分区的日期:$statisDate"
cleanData $tableName $statisDate
else
echo "您输入的表名有错,请输入表名visit_log/evt_log/chnl_req"
fi
elif [ $# -eq 2 ]; then
echo "您输入的第一个参数为: $1,第二个参数 :$2"
tableName=$1
statisDate=$2
if [[ "$tableName" == "visit_log" ]] || [[ "$tableName" == "evt_log" ]] || [[ "$tableName" == "chnl_req" ]]; then
echo "要清除的表名是:$tableName"
if [ ${#statisDate} -eq 10 ];then
echo "清除分区的日期:$statisDate"
cleanData $tableName $statisDate
else
echo "您输入日期不合法,请输入yyyy-mm-dd类型参数"
fi
else
echo "您输入的表名有错,请输入表名visit_log/evt_log/chnl_req"
fi
else
echo "您输入参数多于2个,请重新输入"
fi
这里将一天分成了24个区,所以要删除一天的数据需要删除24个分区,分区以(yyyy-mm-dd-ss)
运行时使用:
你可能感兴趣的:(Hive/Hbase编程指南)