斐波那契数列数组递推,普通递归,记忆化搜索,矩阵快速幂,和公式法

直接数列递推推的时候是O(n)的复杂度,查询的时候是O(1),但是当n很大的时候,数组空间可能有点力不从心


#include 
#include 

using namespace std;

int fb[45];

int main()
{
	fb[0] = 0; fb[1] = 1;
	for (int i = 2; i <= 45; i++) {
		fb[i] = fb[i - 1] + fb[i - 2];
	}
	int n;
	while (cin >> n) {
		cout << fb[n] << endl;
	}
	return 0;
}



斐波那契数列递归定义 f(n) = f(n - 1) + f(n - 2) (n >= 2)  f(1) = f(0) = 1

斐波那契解空间其实是一棵二叉树,斐波那契在若用普通递归算法,当n比较大的时候,直接递归在耗时比较长,原因是大量树节点重复计算,在n达到30,40左右就需要等待较长时间才能算出来一个结果


#include 
#include 

using namespace std;

int f(int n) {
	if (n == 0) return 0;
	if (n == 1) return 1;
	return f(n - 1) + f(n - 2);
}

int main()
{
	int n;
	while (cin >> n) {
		cout << f(n) << endl;
	}
	return 0;
}


若使用记忆化搜索,利用辅助数组对计算过的节点进行记录,相当于对二叉树进行剪枝,当n相对大的时候可以节省不少时间,也就是采用fb一个数组以空间换时间的策略,而且发现对于需要相同节点参与计算的情况,即原来递归的时候从树根到树叶路径上的节点被计算的越多,对后续计算帮助越大,也就是说输入的n如果是递增的则相对原来没有加记忆数组的直接递归方式越算越快


#include 
#include 

using namespace std;

int fb[1005], dp[1005];

int f(int n) {
	if (n == 0) return fb[0] = 0;
	if (n == 1) return fb[1] = 1;
	if (fb[n] >= 0) {  //不是-1说明之前计算过了,直接返回,相当于减掉一课子树,节省大量时间
		return fb[n];
	}
	else {
		return fb[n] = f(n - 1) + f(n - 2);  //若没有是-1说明之前没有计算过,递归计算后更新fb[n]
	}
}

int main()
{
	memset(fb, -1, sizeof(fb));  //刚开始给fb打上标记
	int n;
	while (cin >> n) {
		cout << f(n) << endl;
	}
	return 0;
}


但是当n特别大的时候记忆化就有些无能为力了,这时候可以通过采用矩阵快速幂来解决,顺便附加上poj3070一道题


Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11520   Accepted: 8188

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:


#include 
#include 

using namespace std;

const int mod = 10000;
struct matrix {  //用一个结构体来存矩阵
	int node[2][2];
}ans, tem;

matrix muti(matrix a, matrix b) {  //矩阵a乘b返回结果矩阵
	matrix temp;
	for (int i = 0; i < 2; i++) {
		for (int j = 0; j < 2; j++) {
			temp.node[i][j] = 0;
			for (int k = 0; k < 2; k++) {
				temp.node[i][j] = (temp.node[i][j] + (a.node[i][k] * b.node[k][j])) % mod;
			}
		}
	}
	return temp;
}

int quick_m(int b) {
	ans.node[0][0] = ans.node[1][1] = 1;  //ans初始化为单位矩阵
	ans.node[0][1] = ans.node[1][0] = 0;
	tem.node[0][0] = tem.node[0][1] = tem.node[1][0] = 1;
	tem.node[1][1] = 0;
	while (b) {   //快速幂使用到矩阵乘法中
		if (b & 1) {
			ans = muti(ans, tem);
		}
		tem = muti(tem, tem);
		b >>= 1;
	}
	return ans.node[0][1];  //注意返回的是F(n)
}

int main()
{
	int n;
	while (~scanf("%d", &n) && n != -1) {
		printf("%d\n", quick_m(n));
	}
	return 0;
}


最后公式法,没什么好说的,关键是防误差,中间为了加速,用了对浮点型的快速幂,对于误差没有测试,仅供参考





#include 
#include 
#include 

using namespace std;

double calc(double a, int b) {
	double r = 1;
	while (b) {
		if (b & 1) {
			r *= a;
		}
		a *= a;
		b >>= 1;
	}
	return r;
}

int main()
{
	int n, N;
	int result;
	cin >> N;
	while (N--) {
		cin >> n;
		if (n == 1) result = 0;
		else result = (int)((1 / sqrt(5)) * (calc((1 + sqrt(5)) / 2, n) + calc((1 - sqrt(5)) / 2, n)) + 0.5);
		printf("%d\n", result);
	}
	return 0;
}




你可能感兴趣的:(其他算法)